UNIVERSITY OF CALIFORNIA
RIVERSIDE

Efficient Algorithms for Identification and Analysis of Repetitive Patterns in Biological
Sequences

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in
Computer Science
by
Jie Zheng

September 2006

Dissertation Committee:
Dr. Stefano Lonardi, Co-Chairperson
Dr. Tao Jiang, Co-Chairperson
Dr. Timothy J. Close

Copyright by
Jie Zheng
2006

The Dissertation of Jie Zheng is approved:

Committee Co-Chairperson

Committee Co-Chairperson

University of California, Riverside

Acknowledgments

| am most grateful to my advisor Professor Stefano Lonardi and my co-advisor Professor Tao
Jiang, for their guidance in the early and crucial stage of my research career. It is Professor
Tao Jiang who introduced me to the exciting fields of computational molecular biology and
bioinformatics, and gave me the first research problem to work on. His warm-hearted en-
couragement has inspired in my heart a love for original research. A dedicated, caring, and
stimulating advisor, Professor Stefano Lonardi has provided me with helpful and insightful
advice, not limited to technical questions, throughout my Ph.D. studies. He is one of the
most patient listeners | have ever met.

| am also grateful to Professor Timothy J. Close (Department of Botany and Plant Sci-
ences) for his support and supervision in the NSF Barley Genome Project. | learned from
him how to work fruitfully with biologists.

| would like to thank three post-doctoral researchers at UCR. Dr. Jan T. Svensson pro-
vided valuable comments on my work in th& I @oSPAWN project; Dr. Xin Chen introduced
me to the area of genome rearrangement and collaborated with me in the project of ortholog
assignment; Dr. Petr Kolman collaborated with me onMi@&SP problem.

| wish to express my gratitude to Professor Neal E. Young for teaching me how to design
approximation algorithms as well as for helpful discussions onMI&SP problem, Pro-
fessor Lawrence Harper (Department of Mathematics) for teaching me combinatorics, and
Professor Xiao-Song Lin (Department of Mathematics) for discussions on applying topology

to computational biology.

My thanks also go to my friends and UCR Alumni, Andres Figueroa, Li Jia, Jing Li, Yu
Luo, Jianjun Tian, Chuhu Yang for their friendship.

Finally, I would like to thank my parents and my wife Yuan for their support and love.

The text of this dissertation is in part rewritten from the following previously published

material.

¢ J. Zheng, S. Lonardi. Discovery of repetitive patterns in DNA with accurate bound-
aries. Proc. of IEEE International Symposium on Biolnformatics and BioEngineering

(BIBE'05), pp. 105-112, Minneapolis, Minnesota, USA, 2005.

Stefano Lonardi supervised the research.

e J. Zheng, T. Close, T. Jiang, S. Lonardi. Efficient Selection of Unique and Popular Oli-
gos for Large EST Databases. Proc. of Symposium on Combinatorial Pattern Matching
(CPM’03), pp. 384-401, LNCS 2676, Morelia, Mexico, 2003.

J. Zheng, T. Close, T. Jiang, S. Lonardi. Efficient Selection of Unique and Popular

Oligos for Large EST Databases. Bioinformatics, vol. 20, no. 13, pp. 2101-2112,
2004.

J. Zheng, J. Svensson, K. Madishetty, T. Close, T. Jiang, S. Lonardi. OligoSpawn:

a software tool for the design of overgo probes from large unigene databases. BMC

Bioinformatics, 7:7, 2006.

Timothy J. Close, Tao Jiang, and Stefano Lonardi directed and supervised the research,
and Jan T. Svensson and Kavitha Madishetty contributed to the publication.

\Y

e A. Goldstein, P. Kolman, J. Zheng. Minimum common string partition problem: hard-
ness and approximation. Proc. of International Symposium on Algorithms and Com-
putation (ISAAC’04), pp. 484-495, LNCS 3341, Hong Kong, China, 2004.

A. Goldstein, P. Kolman, J. Zheng. Minimum common string partition problem: hard-
ness and approximation. Electronic Journal of Combinatorics, vol. 12(1), 2005.
Avraham Goldstein and Petr Kolman contributed to the publication through discus-

sions.

The above previously published material has been incorporated in this dissertation with
kind permission of Springer Science and Business Media, Oxford University Press, and IEEE

Computer Society.

Vi

ABSTRACT OF THE DISSERTATION

Efficient Algorithms for Identification and Analysis of Repetitive Patterns in Biological
Sequences

by

Jie Zheng

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2006
Dr. Stefano Lonardi, Dr. Tao Jiang, Co-Chairpersons

Repetitive patterns, or "repeats” for short, are sequences that occurs repeatedly in biological
sequences. Despite their conceptual simplicity, the problem of discovering and characterizing
biologically significant repeats is still open. There are three main stages of repeat analysis:
definition, identification, and interpretation. In this dissertation, we tackle the computational
challenges in each stage and demonstrate the utility of our approaches to several fields of
computational biology.

As it turns out, devising a definition of repeats that is mathematically sound and biolog-
ically plausible is rather challenging. We propose a new definition of repeats that considers
both length and frequency of occurrences. Our approach is a two-step process: we first model
the building blocks of repeats (calletementaryepeats), and then model the longer repeats

as concatenations of elementary repeats (calbedpositeepeats).

vii

In the identification stage, the challenge is to design high-throughput algorithms to pro-
cess large datasets. We describe algorithms for selecting two types of oligos from large
DNA sequence databases, namelyufijqueoligos, each of which appears (exactly) in one
sequence but does not appear (exactly or approximately) in any other sequence e (ii)
ular oligos, which appear (exactly or approximately) in many sequences. By taking into
account the distribution of the short substrings in the sequence database, the algorithms show
remarkable efficiency. We implemented our algorithms in a software called@BSPAWN,
which has been used successfully to process a large unigene database for barley.

The goal of the interpretation stage is to infer evolutionary or functional relations among
the discovered repeats. In the wide range of problems in this domain, we address the problem
of genome rearrangement with multigene families, where duplicated genes are treated as
repetitive patterns. We aim to find a one-to-one mapping of genes between two genomes such
that their breakpoint distance is minimized, which is formulated as minimum common string

partition MCSP) problem. We provéMCSP NP-hard and give approximation algorithms.

viii

Contents

List of Tables Xii
[List of Figures| Xiii
(1 _Introduction| 1
(1.1 Challenges. e 3
(1.2 Asummary of our contribution 4
(1.3 Targetedaudience e e 6
[2 Repeat Finding 8
21 Preliminarigs 8
211 Relatedwork 10
2.1.2 Ourcontribution 11
2.2 Definition e 14
[2.3 Algorithms for finding elementary repeats 17
[2.3.1 Exactrepeats 17

RATResUlls. 26
241 Simulafions 26
[2.4.2 Realbiologicalrepeats 29

[3 Oligo Design 31

BI Prelminari€s o oo 32
BI11 OurConfribution, 34
BI12 Nofations 37

[.2 Uniqueoligpb 37
B21 Definitioh 38
B22 AIGOMAM .« . v oo e e e e e e e 39
[3.2.3 Group-uniqueolilgo. e 41

[3.3 Popularoligo 42
[.3.1 Definition e 43
[3.3.2 Algorithm 45

[.4 Oligo filtration and selection 49

BE ResUllS. o 53
[3.9.1 Implementatian Lo 53
[3.0.2 Simulations e e 53
[3.5.3 Runningonrealdata 56

[3.9.4 Overgo hybridization 58
4 Minimum Common String Partition | 62
M1 Prelminari€s 63
411 Relatedwork 64
4.1.2 Combinatorial propertles MCSP| 66
[4.2 Hardness of approximation 71
[4.3 Algorithms e 77
4.3.1 Simplel.5-approximation foR-MCSP| 77
4.3.2 Reducin@-MCSPtoMIN 2-SAT| 79
__Conclusion 84
6.1 Futuredirections 86
Bibliograp 88

Xi

List of Tables

[2.1 Accuracy of exact elementary repeats detection in simulated data. 27
[2.2 Accuracy of approximate elementary repeats detection in simulated data. . . . 28
[2.3 Average accuracy of exact and approximate repeat identification for Alu re]

| PealS. e e 30
[3.1 The average relative errors between the number of colors in the input and

| the number of colors in output for a simulated experiment(1.44 x 10°, |

| 7= 2000, I, = 20, Coomx = 100, 8 = 100)] + v v v oo e e 54
[3.2 Specificity of group-unique oligo bylGOSPAWN validated by BLAST. . . 56
[3.3 Distribution of frequencies of seeds In barley unigenes. Ihe left column Is|

| the range of the number of occurrences. Ihe right column Is the number of

| seeds with a certain number of OCCUIrences.« . o v v v o . . 57

A4 Distribution of the number of colors of th res. Ihe ler lumn iIs th
| range of the number of colors. The right column IS the number of cores with|
rtain number ofcolor. oL 59

Xii

List of Figures

21

An example of elementary repepts. o oL 12

22

The sequence ofthe Alurepgéat. 30

B.1

An overview of the algorithm ftor selecting popular oligos. For convenience |

of illustration, the Tength of the oligos is assumed id be36, and the length |

ofthe coresisassumedtohbe=20.. 47

3.2

Distribution of unique oligos. I'he horizontal axis stands for the percentage

of unique oligos over alj6-mers in a unigene, and the vertical axis stands |

for the number of unigenes whose unigue oligos are at a certain percentage

Results of running the algorithm on the Barley dataset. Shown are the num-

ber of candidates generated by the algorithm (in millions), the number of|

unigenes covered, the final number of popular oligos, the coverage ratio, angl

the time taken by the algorithnm (for different choices/oy| 60

[4.1 Conflict graph foMCSP InstanceA = abcab andB = ababe. 68

Xiii

4.2 Aninstancd,, in the proof of NP-hardness atMCSP. The lines represent |

all matches, with the bold lines corresponding to the matches in the minimum

common partitior0),,| 72

Xiv

Chapter 1

Introduction

Mathematics is the art of giving the same name to different things. (As opposed

to the quotation: Poetry is the art of giving different names to the same thing.)

Jules Henri Poincér(1854-1912)

Large-scale genome, transcriptome and proteome projects, especially the Human Genome
Project, have produced and continue to produce tremendous amounts of data. These data
can be roughly classified by their intrinsic dimensionality. One-dimensional data include
biological sequences, e.g. DNA, RNA, and protein sequences. Two-dimensional data include
gene expression data, RNA secondary structures, and mass spectrometry data, among others.
Three-dimensional data include the tertiary structures of proteins as a notable example. This
dissertation is concerned with the analysis of one-dimensional data.

Biological macromolecules (i.e. DNA, RNA, and proteins) consist of chains of small
organic molecules callethonomers Despite the overall complexity of macromolecules,

1

they are composed by only a few different types of monomers. In DNA, the monomers are
adenine, guanine, cytosine, and thymine. RNA uses the same set of monomers with the ex-
ception of thymine which is replaced by uracil. In proteins, there are 20 types of monomers
calledamino acids From a combinatorial viewpoint, these are discrete “objects” and can
be represented as sequences (or “strings”) over finite alphabets consisting of symbols rep-
resenting the monomers. This natural representation as strings enables us to take advantage
of the large corpus of computer science research on text processing, in particular regarding
algorithms and data structures. Developing efficient computer algorithms for the analysis of
biological sequence data is arguably the main objective of a subfield of computer science
calledcomputational molecular biology

In biological sequence analysis, the discovery and characterization of repetitive patterns
(or “repeats” for short) plays a central role. Roughly speaking, repeats are strings that appear
repeatedly. It is assumed that frequent or rare patterns may correspond to signals in biolog-
ical sequences that imply functional or evolutionary relationships. For example, repetitive
patterns in the promoter regions of functionally related genes may correspond to regulatory
elements (e.g. transcription factor binding sites). As another example, a multigene family
is a group of genes from the same organism that encode proteins with similar sequences. It
is believed that a multigene family is formed through DNA duplications and variations of a
single ancestral gene.

As it turns out, the concept of repeat is one of the most versatile in computational biology.

An example can be found in [48], where the authors applied repeat analysis to five distinct

areas of computational biology: checking fragment assemblies, searching for low copy re-
peats related to human malformations, finding unique sequences, comparing gene structures
and mapping of cDNA/EST. In this dissertation, we aim to build new models of repeats that
are more realistic and flexible than in [48], and to apply repeat analysis to several application

domains.

1.1 Challenges

Based on our experience, there are three main stages of repeat analysis: definition, identifi-

cation, and interpretation. Next, we describe the challenges in each stage.

Definition. The majority of existing methods (e.q. [48,/34]) define a repeat pairaof

similar strings of maximal length. They tend to ignore, however, the importance of repeat
frequency i.e. the number of occurrences. It turns out that finding a definition of repeat
that takes into account both length and frequency is rather challenging. Also, the definition
is supposed to incorporate the notion of similarity between occurrences of the same repeat,

which adds to the difficulty.

Identification. The challenge in this stage is to design algorithms with high-throughput
efficiency. Typical input consists of large-scale datasets (e.g. whole-genome sequences).
Since the consensus sequence of repetitive patterns may not appear exactly in the input at all,

the search space is in general much bigger than the input itself. Moreover, space efficiency

is often crucial in sequence analysis, because the limitation of computer memory can make
it difficult to process large input no matter how fast the algorithms can be. Therefore, our

algorithms should achieve good trade-offs between time and space efficiency.

Interpretation. In this stage, the goal is to analyze the discovered repeats in order to infer

their functional and evolutionary relationships. To this end, we need to visualize the repeats
comprehensively and intuitively. The challenges are mainly due to the overwhelming number
of repeats to handle. Moreover, we need to rank different repeats by either statistical or
biological significance. However, there are different ways to assess statistical significance,

and statistical significance may not correspond to biological significance.

1.2 A summary of our contribution

In this dissertation, we tackle some of the challenges mentioned above and present algorithms
for finding and analyzing repeats.

In Chaptelf 2, we give a novel definition of repeats that takes into account both length
and frequency. The main idea is to employ a two-level approach: first, we identify short and
frequent repeats as basic building blocks, which are calethentaryrepeats; second, we
identify long and less frequent repeats as concatenations of elementary repeats, which are
calledcompositaepeats. We also design efficient algorithms for finding elementary repeats
and report simulation results on synthetic data.

In Chaptef B, we present efficient algorithms for selecting short (e.g. 20-50 bases) strings

calledoligos from large EST Expressed sequence tagsigene databases. ESTs are par-

tial sequences of expressed genes generated by sequencing from one or both ends of cDNA
sequences, and unigenes are assemblies of overlapping EST sequences or non-overlapping
EST sequences (see Secfion 3.1 in Chdpter 3 for more details). We design two complemen-
tary types of oligos: (i) unique oligos, each of which occurs exactly in one unigene, but
does not occur exactly or approximately in any other unigene. (ii) popular oligos, which
appear exactly or approximately in many unigenes. The main strategy is based on the anal-
ysis of the frequencies of short substrings in the unigene database. The resulting algorithms
show remarkable efficiency. We have implemented the algorithms into a software tool called
OLIGOSPAWN, which has been used successfully to process a large unigene database for
barley.

In Chapteff 4, we address the problem of genome rearrangement with multigene fami-
lies, where duplicated genes are treated as repetitive patterns. In particular, we aim to find a
one-to-one mapping of genes between two genomes such that their breakpoint distance (see
e.g. [75]) is minimized, which is formulated as minimum common string partiG$P)
problem. The correspondence of genes implies evolutionary and functional relations of ho-
mologous genes between two species. We proveMiE8P is NP-hard even when each gene
family contains no more than two genes, and we present several approximation algorithms
with ratio bounds.

The main contribution of Chaptg} 2 is the novel definition of repeat. Chipter 3 is focused

on the efficiency of algorithms. Chapfefr 4 aims to find evolutionary relationships among

discovered repeats. Thus, each of the three chapters focuses on one of the three stages of
repeat analysis. However, we do not claim to have solved all the problems in each stage.
Rather, we present promising techniques for solving specific problems arising from concrete
applications.

Each of the three chapters is organized as follows. At the beginning, we describe the
biological motivation and related work. Then, we introduce definitions and computational
problems, and study their properties (e.g. computational complexity). After that we present
algorithms for solving the problems and analyze their theoretical performance (e.g., asymp-
totic running time or approximation ratio bounds). Finally, we perform empirical analysis of

the algorithms by simulation on synthetic or real biological data.

1.3 Targeted audience

In addition to computational biologists, two other types of readers may find the material in
this dissertation useful. First, this dissertation could provide biologists with several prac-
tical tools for discovering and analyzing patterns from large sequence databases. Second,
computer scientists whose research interest is in information retrieval, data mining and data
compression, etc., may possibly extend some of the ideas presented here to their own fields
of study, due to the generality of the concept of repetitive patterns.

It is appropriate to mention topics that are related but not treated in this dissertation. First,

we do not attempt to analyze biological data directly. Instead, we provide useful computa-

tional tools that facilitate the biological discovery. Our experiments mainly test the accuracy
and efficiency of the algorithms. Second, this dissertation is application-oriented. Our objec-
tive is to design and implement practical algorithms, instead of exploring theoretical proper-
ties of the computational problems. Last but not least, our methods are combinatorial, and

do not employ statistical models (e.g.[74] 23, 27]) or machine learning techniquesi(e.g. [5]).

Chapter 2

Repeat Finding

In this chapter we give a novel definition of repeats that balances the importance of the
length and the frequency of repeats. We model the basic building blocks of repeats called
elementary repeats, which leads to a natural definition of repeat boundaries. We also design
efficient algorithms for finding elementary repeats, and test them on synthetic data. This

chapter is a revision of [79].

2.1 Preliminaries

Despite the incredible progresses that have occurred in Genomics in the last fifty years, sev-
eral fundamental questions remain unanswered. Some of the most intriguing questions are
about the role of non-coding DNA, and in particular the role of repetitive sequences. As
it turns out, a significant fraction of the genome of complex organisms is repetitive. For

example, only about 1% of the human genome codes for proteins, but more than 50% of

8

the human genome is composed of repetitive sequences [51]. Repeats are classified in five
classes, namely pseudo-genes (0.1% of the human genome), simple repeats (3%), segmental
duplications (5%), transposons (45%) and tandem repeats.

Although these long stretches of repeated DNA are commonly regarded as “junk”, there is
evidence that a variety of genetic diseases are associated with defects in the repeated structure
of some regions of the human genome. More than a dozen human genetic diseases, including
fragile X syndrome, myotonic dystrophy and Friedreich’s ataxia are related to irregularities
in the length of repeats. Insertional mutagenesis by SINEs (short interspersed elements)
and LINEs (long interspersed elements) in mammals have resulted in cases of hemophilia,
Duchenne muscular dystrophy, and sporadic breast and colon cancer.

A very important problem in computational biology is how to identify, classify, represent
and visualize repeats. The general problem of repeat discovery and classification can be
decomposed into two distinct subproblems. In the first, one identifies the boundaries of
each copy of the repeats. This problem, usually attacked by performing local alignments,
is difficult becausef degraded or partially deleted copies, related by distinct repeats, and
segmental duplication covering more than one reggabte from[[6]). The second problem
in the repeat classification is to infer the series of duplications that produced the final string.

In this paper, we will focus on the first problem.

2.1.1 Related work

Most of the computational tools for repeat identification available to biologists either require
an annotated library of repeats (e.gERFEATMASKER [70Q]) or simply output all pairs of
repeated regions (e.g., REPER[49,/4€], [(68]). The problem with the first approach is that it

is too limiting, in particular when trying to analyze a new genome for which a complete repeat
library is unavailable. The latter approach is not completely satisfactory either, because it
fails to elucidate the complex structure of repeats.

From a theoretical point of view, a repeat is usually defined as a pair of identical (or
similar) substrings. For example, in Gusfield’s definition [34] the objective is to find maximal
repeated pairs. In RERER [49,/48] the output is again a list of pairs of similar strings of
maximal length. Most definitions have in common the idea of maximizindethgthof the
repeats. They tend to ignore, however, the importance of repeat frequency, i.e., the number
of occurrences.

As said above, repetitive elements typically occur more than twice in real biological se-
guences. For example, transposons typically occur hundreds of thousands of times in com-
plex genomes. Therefore, we believe that a biologically meaningful definition of repeats
must take into account both the lengthd the frequency of repeats (and perhaps other fac-
tors as well). Unfortunately, as noted by some researchers (e.g., [8]), devising a definition
of repeats which is biologically plausible is not an easy task. When the frequency of repeats
are allowed to be more than twice, there exist tools (e.9./[66, 9]) for finding short or tandem

repeats. However, they are unable to find long and dispersed repeats.

10

Bao and Eddy/ [6] and Pevznet. al.[59] recognized the shortcomings of definitions that
rely solely on length, and attempted to take into account other factors. A rigorous definition
of repeats considering both length and frequency, however, has not been given yet. The
difficulty lies in the assessment of repeat boundaries once the objective of maximality in
length is dropped. According tol[6], approaches by multiple alignment are also problematic
because the mosaic structure of repeats will be missed and the problem of multiple alignment
itself is difficult. In [59], Pevzneet. al. proposed a graph calle&lBruijn graphto explore
the mosaic structure of repeats. However, A-Bruijn graph is complicated and difficult to
analyze, especially when the input sequences are long and contain a large number of repeats.
In addition, the approach based on A-Bruijn graph still requires the pairwise local alignment
of the input sequences given as input, and thus the results heavily depend on the performance
of the pairwise alignment.

Recently, more attention has focused on the detection of repeat boundariesetPrice
al. [60] proposed the tool RPEATSCOUT to identify repeat boundaries via extension of con-
sensus seeds. R. Edgar and E. Myers [24] developed the tool PILER to find repeats with
reliable boundaries by considering well-known repetitive structures, e.g., terminal repeats

and tandem arrays.

2.1.2 Our contribution

As noted by Bao and Eddthe problem of automated repeat sequence family classification is

inherently messy and ill-defined and does not appear to be amenable to a clean algorithmic

11

S1 Sa S3

1 aat CGGAGGTUAAAACGGATAAYGTGAGT Gettaggticgtattac
S1 Sa S3

51 atggg CGGAGGTUAAAACGGATAAUGT GAGTGagtggaccgcatga
S S3 So

101 cca CGGAGGTURTGAGTEI AAAC?SGATAACGggtcgggatcgagact

Figure 2.1: An example of elementary repeats.

attack(quote from[[6]). We felt that in order to give a clean algorithmic attack, a natural and
clean definition of repeats was indispensable. To this end, we propose a bottom-up approach
that starts with the definition of basic building blocks of repeats that westaihentary re-

peats Intuitively, an elementary repeat is a string whose substrings have similar (or identical)
distribution of occurrences. Before giving the formal definition, let us consider an example

in Figure[2.1 which illustrates the motivations as well as the basic idea.

In Figure[2.1, the DNA sequence contains three rep&ats,, and.S;, each occurring
three times. At the first glance, it would appear that the segmentS; S,Ss is the “correct”
repeat, as itis the longest. This is, in fact, what would be reported if the definition were solely
based on maximal length. However, we can see thatactually composed of independent
“elementary” repeats, namely;, S;, and S;, because their order is shuffled in the third
occurrence.

The example in Figure 2.1 is not a fictional scenario. Instead, it corresponds to a real bi-
ological case. In the four groups of LTR retrotransposons, Tyl/copia differs from Ty3/gypsy,
Bel elements, and retroviruses by the order of POL protein coding domains. The order in

Tyl/copia elements iprotease, integrase, RT/ribonuclease While the order in the other

12

three groups iprotease, RT/ribonuclease H, integrasehe shuffling of the POL domains
is one of the main features in the classification of LTR retrotransposons (see [29] for more
details).

The identification of the internal components of complex repeats, such as POL domains
of LTR retrotransposons, must be the first step in the accurate detection of repeats. The dis-
covery of the internal structure could be helpful also to infer the functions of repeats because
the order of these basic blocks is sometimes responsible for their functions. Moreover, con-
servation of the basic blocks among different types of repeats can reveal their evolutionary
relationship.

The aim of this chapter is to model the basic building blocks of repeats as combinatorial
objects. To this end, we have defined a specific set of properties that they must satisfy. First,
the blocks must occur a minimum number of times and can not be too short. Second, they
must beelementaryi.e., they can not contain other basic blocks inside. We call these basic
blockselementaryepeats. In this paper, we consider two types of elementary repeatd,
elementary repeats amaghproximateslementary repeats. The former type requires all copies
of one repeat to be exactly identical, while the latter allows substitutions, insertions and

deletions.

13

2.2 Definition

We use standard concepts and notation about strings. Thedsgtotes a nonempgtphabet
of symbols and astring over X is an ordered sequence of symbols from the alphabet. We
assume that the input is a strisgof lengthn overX. We also uséS| to denote the length
of S. We write S[i], 1 < i < n, to indicate the-th symbol inS. We useS|i, j] as shorthand
for the substringS[:]S[i + 1]...S[j] wherel < ¢ < j < n, with the convention that
Sli,i] = S[i].

Let A be a substring that occurs (exactly) multiple times in the input stlingLet
(A1, As, ..., Ay) be the sorted list of the occurrences 4f We call f the frequencyof
A, also denoted(A). In the rest of the paper, l¢f, > 2 denote the minimum frequency of
repeats, which is a parameter set according to applications. Although the sypdehotes
the sequence composition of one of the occurrencels sdbmetimes we will abuse this nota-
tion and used it to denote the position4in S. The meaning will be clear from the context.
We call A; acopyof Ain S.

Let B be a substring ofi, and let(By, B,, ..., By) be the sorted list of the copies &f
in S. Clearly, each copy aoB is a substring of a copy of, but B may also appear elsewhere
in S. We say thatB occurs withshift s in A if B starts at positiors + 1 in A, that is

Als+1,s+ B[] = B.

Definition 2.2.1 Let A and B be substrings of as defined above. Thdnis a subrepeabf

Aif f = k and everyB; occurs with the same shiftin A; forall i = 1,2,...,m.

14

Intuitively, B is a subrepeat ofi when the distribution of the occurrences Bfin S
“agrees” with that ofA. Next, we need to consider the length of repeats. A substrirtjief
callednontrivial if its length is at least equal to a specified threshiglg. Hereafter, we will
always usé,,;, to denote such threshold. Typically,, ~ logs; m, but it can be set as other

values according to the application.

Definition 2.2.2 An exact elementary repeat S is a nontrivial substringA of maximal
length such that! occurs at leasf,, times and every nontrivial substring dfis a subrepeat

of A.

In other words,A is an exact elementary repeat when it does not contain any nontrivial
substring with a different distribution of occurrences and it is maximal in length. Going back
to the example in Figurde 2.1, if.,, = 8, thenS), S;, andS; are exact elementary repeats
because they do not contain any substring of length at least 8 with a different distribution of
occurrences. However, the concatenatios S;.5,53 of the three substrings is not an exact
elementary repeat, because nontrivial substrifigs,, andS; are not subrepeats df.

Now let us generalize exact elementary repeats by considering the approximate case.
Given areal number > 0, we say that sequencee-matchesequencel’ if D(A, A')/|A| <
¢, whereD(A, A') is theedit distancebetweenA and A’, i.e. the minimum number of edit
operations (substitutions, insertions and deletions) that transfanto A’. We call A’ as an
e-copyof A. In addition, letB be a substring off. Then there must be a substring A,
denoted byB’, which corresponds t8. We call B’ theimageof B. The concept of “image”
mirrors the concept of “occurrence with shift in the exact case. Thus we will define it

15

formally in the following. Given an edit scrigt = (eq, ea, . . ., ¢4) that transformsi into A’,
we say that is orderedif, for any i, j such that;, e; operate omA[:'], A[j'] respectively,

1 < jimpliesi’ < j'. Thatis,£ operates ol from left to right.

Definition 2.2.3 Suppose the shortest ordered edit script that transfofrnmo A’ is (e, es, . .., e;),
where €;, €11, ..., ¢€;), forl <i < j <t, transforms a substring of A into a substringB’

of A’. Then, we calB’ as theimage of B induced byA.

String B is called annternal repeatof A if (i) B is a substring of4, (ii) every image of
B induced byA is ane-copy of B, and (iii) the total number of non-overlappiagopies of
B in S is equal to the images d induced byA. Note that internal repeats should not be

reported because they are not independent repeats.

Definition 2.2.4 Anapproximate elementary repe#tS is a nontrivial stringA of maximal
length such thatd has at leastf,, e-copies inS and every nontrivial substring of is an

internal repeat ofA.

In contrast to exact case, an approximate elementary repeat need not appear exactly in
As a result, approximate repeats are much harder to identify than exact repeats. In the rest of

the section, we may sometimes omit the weleimentaryor brevity.

Lemma 2.2.1 The number of copies @il exact repeats ity is upper bounded by.

In fact, for any two exact repeats and B, A is not a substring of3; otherwise,A can
be extended t@3 and remains an exact repeat, contradicting the maximality of length in

16

Definition[2.2.2. This is important because the size of output is a serious practical issue in

repeat analysis.

2.3 Algorithms for finding elementary repeats

The goal in this section is to design algorithms for finding both exact and approximate repeats
in along input sequence. A repeat can be represented by a list of pairs, each denoting the left
and the right boundaries of a repeat copy. Hence, the problem of identifying repeats can be
restated as the problem of finding their accurate boundaries. The task of our algorithms is to

scan the input string and decide whether a position 8fis a repeat boundary or not.

2.3.1 Exact repeats

An exhaustive algorithm for finding exact repeats is computationally impractical, because
there ared(n?) substrings inS, and each substring of lengtttontainsO(I?) substrings to
check.

In sequence analysis thhegramapproach is well-known for its effectiveness in filtering
out non-candidates (e.g., se€el[34] and reference therein). The idea is to collect the occur-
rences (or other statistics) for all the substrings of a given lepgtid use that information
to discard substrings that can not be solutions to the problem at hand. Recenjhgrtima
approach has been used in repeat analysis (e.gl, [73, 24]).

Our definition of exact repeat allows thegram filtering approach for the identification

17

of potential elementary repeats. More specifically, we collect statistigsnudrs inS. We
call theseg;-mersseeds

We find the boundaries of exact repeats by detecting the positions in which there is a
change in the distribution of the occurrences of the seeds. Given the definitions in Sec-
tion[2.2, a necessary condition for a substrihgp be an exact repeat is that all its nontrivial
substrings are equally frequent. This condition allows us to reduce the search space of poten-
tial candidates considerably. Moreover, it suffices to consider only the frequencies of seeds,

due to the following lemma.

Lemma 2.3.1 A nontrivial substringAd which occurs at leasf,, times is an exact elementary
repeat if and only if it is a maximal substring such that all its substrings of lehgthare as

frequent aA itself.

Proof. If A is an exact repeat, then by definition all its nontrivial substrings, including those
of lengthl,,;,,, are as frequent as itself. f is not an exact repeat, either it is not maximal in
length, or it has a nontrivial substrirfg that is more frequent thaa. But then any,,,;,-mer

in B, which is also in4, is more frequent thad. O

Our goal is to compare the frequency of the substrdngith its seeds efficiently. Our
strategy is to store and retrieve the frequencies of substrings in the suffik-fogestring S.

In the following, the notations about suffix-tree are adopted from [34, pages 90-91].

Lemma 2.3.2 ([34]) In linear time, we can compute for each internal nadine number of
leaves inv's subtree.

18

Proof. We can do a depth-first search drin linear time and compute the number of leaves

in v's subtree by adding the numbers of leaves’sichildren.O

Let f; denote the frequency of théh ¢-mer seed, and lef(A) denote the frequency of
any substringd in S. Every substringd of S can be associated with a noden 7', such
that f(A) equals the number of leavesqfs subtree. To find such a node we match the
symbols ofA along the unique path ifi" until A is exhausted. If the path ends at a node,
then that node is; if the path ends in the middle of an edge, then the lower end of the edge
is the nodey associated wittd. Hence, there is a many-to-one mapping from substrings of
S to the nodes of'. Moreover, two substrings of equal length are mapped to the same node

if and only if they are identical.

Lemma 2.3.3 In linear time, we can map evegymer seed of string to a nodev in suffix-

treeT" with minimum string-depth such that the seed is a prefix of the path-label of

Proof. We build a vecto” of lengthn — ¢ + 1 such thatV'[i] contains the pointer to the
suffix-tree node associated with tith seed. We do a depth-first searchioand record the
string-depth (i.e. length of path from root) of the node being visited. If by moving from node
u to nodev the string-depth increases from smaller thato at leasty, then letP, be the
pointer to node. For every leaf in v’s subtree, which we visit one by one in the traversal,
we fill V'[i] with P,. Since depth-first search tak@$n) steps and each operation above takes

constant time, building the vectof takes linear timed

Corollary 2.3.1 After linear-time preprocessing, the frequengyof theith seed is equal

19

to the number of leaves in the subtree under node pointed 3 [By and it thus can be

computed in constant time.

The algorithmExact-Repeat for finding exact elementary repeats works as follows.

Phase 1. Construct suffix tred” for string .S, and we associate with each internal nede
of T' the number of leaves in's subtree. We also construct the vectdi ...n — ¢ + 1] as

described in the proof of Lemnja 2.8.3.

Phase 2. Scan stringS from left to right, and fori = 1,...,n — ¢ + 1, decide ifi is the
left or right (or neither) boundary of an exact repeat. The left and right boundaries locate
alternatively alongb. Initially, we seti to min{k|fx > f.,} as the left boundary. Suppose we
have set positioh; as a left boundary, and we look for the right boundarylLet i increase
from b, and letA; = S[b;, i+ q — 1], i.e. A; is the substring of from b, to the end of théth
seed. Iff(A4;) = f;, we move on ta + 1 since, by Lemm.]Ai is a prefix of an exact
repeat; otherwise, we sktto: — 1 as the right boundary paired with Then, we move on
to find next left boundary = min{k|k > b,, fr > f.}, until string.S is exhausted.

To efficiently computef (A4;), we keep track of the last symbol of stridg along the path
in suffix treeT as follows. If; is a new left boundary, we jump to node Bfpointed to by
V'[i] and locate the end of the path whose label is identical withittheeed. When moving
fromito:+ 1, we match the last symbol of; . ; along the path if’, increasing string-depth
by one. By Lemma 2.3|2 and Lemina 2]3.3, in theiteration, we can computg and f(4;)
in constant time.

20

In order to retrieve positions of repeat images in the next phase, whenever a right bound-
ary is selected, we mark the most recently visited node, whose path-label is the identified

repeat.

Phase 3. Finally, we do a depth-first traversal @f so that for each marked node whose
path-label is a repeat, we collect the leaves in its subtree, which contains positions of the

repeat images. The repeat length is the string-depth of the node.

Time and Space Complexity. In phase 1, construction of suffix tree and vectbtakes
linear time, due to Lemnja 2.3.3. Phase 2 takes linear time, since each postexamined
once and théth iteration takes constant time. In phase 3, depth-first traversal takes
linear time. Therefore, algorithriExact-Repeat is in linear time. Similarly, it takes linear

space also.

2.3.2 Approximate repeats

Compared with exact case, approximate repeats are more realistic for applications in molec-
ular biology. However, the problem of finding approximate repeats precisely is very difficult,
therefore we give a heuristic which extends the ideas for finding exact repeats to follow the
definition for approximate repeats.

The basic idea for finding approximate repeats is the following. Suppose a répeat
matchesA,, A,, ..., A,, In .S, and two seeds ofl, sayH and.J, occur inA with shifts sy,

s respectively. Then the images Bf induced byA are likely to occur inAd4, ..., A,, with

21

shifts close tosy. Similarly, images of/ are likely to occur in the copies of with shifts
close tos;. Thus, in each copy ofl the offset of the images df and.J is close tosy — s.

If we subtract the offset, then the occurrence listd40tind J shall be similar, where the
similarity is measured by number of images iéfthat are close to images of and vice
versa. In our algorithm, we use the similarity between the occurrence lists clusoessive
seeds to measure the likelihood that they belong to the same approximate repeat.

For example,S = cACGTGagACGAGgcaACGT@&here the capital letters represent
repeatACGTGvhich occurs three times. Suppose the length of seed is two. The occurrences
of seedACare 2, 9, and 17, and the occurrences of sg€dre 3, 10, and 18. The two
seeds have similar occurrence lists except for a shift of one position, hence they are likely to
belong to the same repeat. Notice the substitution in the second occu@EGwhich is
acceptable in our heuristic.

The algorithmApproximate-Repeat is sketched as follows.

Algorithm Approximate-Repeat(S, g, f..)

Input: string S of lengthn, seed lengtly, minimum repeat frequency,

Output: left and right boundaries of approximate repeats'in

1. (By, Bs, ..., By) < blocks of seeds of frequenciesf,,

2. for each selected block; do

3. APX-SEED-MERGE (B;)

4. save contigs from AX-SEED-MERGEInto setC'

5. CONTIG-MERGE (C)

22

Subroutine APX-SEED-MERGE (B: a block of seeds of frequenciesf,,)

6. fori«— 1to|B| —1do

7. (P, Q) < sorted lists of occurrences of se@di + 1)
8. if SIM-SCORE(P,Q,1) > SSun(P,Q) or

9. SM-SCORE (Q, P,—1) > SSuin(Q, P) then

10. merge seedsi + 1

Subroutine SIM-ScoORE(occurrence listg? and(@), offsetd)
11. Q—Q—d
12. b,p <+ 0 [* bonusb and penalty */

13. fori< 1to|P|do

14. Q; — palof P, in Q /* Q) is the closest td; in Q*/
15. if |P,—Q;| <dn,thenb—b+1
16. elsep —p+1

17. return b — In(p)

Subroutine CONTIG-MERGE (list of contigsC)

18. fori<— 1to|C|—1do

19. A — last seed of contig;

20. B « first seed of conti@’;, ;

21. dap < position offset ofB againstA

22. if dap < D, then [* A, B are close enough */

23

23. (P, Q) < sorted occurrence lists of segds, B)

24. if SIM-SCORE(P, Q, dag) > SSmin(P, Q) or
25. SM-SCORE(Q, P, —dag) > SSmin(Q, P) then
26. merge contigs’;, C;41

The algorithmApproximate-Repeat works as follows. In line 1, we locate the blocks
consisting of seeds that are at least as frequent as a specified thrésholis step reduces
the search space by discarding non-repetitive regions. fd@ihéop of lines 2-4 merges
successive seeds in each selected block into longer substrings if their occurrences are similar.
We call these longer substrings, which are constructed by merging one or more successive
seedscontigs Similarly, line 5 merges successive contigs if they belong to the same repeat.
In the subroutine AX-SEED-MERGE, we decide whether a pair of successive seeds
should be merged based on the similarity scores of their occurrence lists. Note that the
scores and the thresholds are related to the order of seeds. The subroutiSe &RE cal-
culates the similarity score, by first removing the offset in line 11. Then iridhéoop of
lines 13-16, we count the number of positionsArthat have a close position . Thepal
of P; is the positionR; in ¢ with the smallest absolute difference with If the difference
is no more than a specified threshalg, then we increase bonusby one; otherwise, we
increase penalty by one. The similarity score is definedias In p, a heuristic formula that
emphasizes the significance of matches. The heuristic thresi$Qld (P, Q) is defined as a
fraction of | P|.

The subroutine ONTIG-MERGEIs similar to APX-SEED-MERGE, except that now we

24

are trying to merge the last seed of the previous contig with the first seed of the next contig.
The purpose of ONTIG-MERGEIs to reconnect segments that are broken by substitutions

and indels.

Time and Space Complexity. It takesO(n) time to find the blocks that consist of seeds
of frequencies at leasf,,. For each distinct seed,\8-SCORE is calledO(n) times, as

in APX-SEED-MERGE and GONTIG-MERGE Each call of $v-ScoRE takes time lin-

ear in the size of input occurrence lists. Therefore, the total running time of algorithm
Approximate-Repeat is O(n?). On average, however, it is much faster, as most seeds are

likely to occur only a few times. The algorithm takes again linear space.

Post processing The output contains false positives due to the following reason. As-
sume the copies of a repedtare A, As,..., A,,. Let{x,xs,...,2,,} be the multiset
of symbols that follow the occurrences af Whenm > ||, at least|m/|X|| symbols in
{x1, %9, ...,x,} are identical. Let us assume that they are identical with symbdlhen,
the suffix of length,,;, — 1 of A concatenated witly will result in a spurious repeat at the
right end of A. Similarly, a spurious repeat may also occur at the left end. of

The purpose of post processing is to detect and remove these false positives. Observe that
a spurious repeat overlaps with a true repeat Wijth — 1 symbols, and it is less frequent
than the true repeat. We can detect the spurious repeats by comparing each repeat candidate
with its preceding and succeeding repeats. Clearly, the post processing takes time and space

linear inn.

25

2.4 Results

In this section, we demonstrate the accuracy of our algorithms by showing some experimental
results. We test our algorithms on synthetic datasets obtained by inserting simulated and
real biological repeats into random DNA sequences. We do not compare our results with

other tools for repeat identification, because the concept of elementary repeats is unique to
this approach while other tools (e.g. REFER) output pairs of maximal repeats which are

incomparable with our output.

2.4.1 Simulations

Our method of constructing the simulated DNA sequefidge as follows. First, we gener-
ate a set of random DNA strings, which corresponds to a set of elementary repeats. Each
repeat has attached a specified multiplicity which is generated by Poisson distribution. We
randomly permute the multiset of repeat copies by the algorithm of Fisher and Yates [28].
Then, we alternate the repeat copies (selected according to their order in the permutation)
with purely random DNA sequences whose lengths are generated by Poisson distribution.
The frequencies of repeats and the lengths of the gaps among repeats are selected according
to Poisson distribution because it is the most appropriate probabilistic model in this case (see,
e.g. [73)).

When we are simulating approximate repeats, we also randomly mutate each copy before

it is used. The sequence of edit operations is generated randomly, and the number of muta-

26

input output
gap Se (%) 1}, (%)
ave. | worst | ave. | best| worst | ave. | best
50 | 92.8 | 99.9| 100 | 86.3 | 99.9| 100
100 | 94.7 | 99.9| 100 | 90 | 99.8| 100
150 | 100 | 100 | 100 | 100 | 100 | 100
200 | 100 | 100 | 100 | 100 | 100 | 100
250 | 90.4 | 99.9| 100 | 82.5 | 99.8| 100

Table 2.1: Accuracy of exact elementary repeats detection in simulated data.

tions is bounded by a percentage, say 2%, of the length of the repeat copy. Finally, we append
at both ends of the assembled sequence two pieces of random DNA, and that completes the
construction of5. We also record the left and the right boundaries of each repeat copy, which

will be compared with the output of our algorithms.

When we feedS as input to our algorithms, the output is a list of pairs of boundaries.
A boundary in the output matches a boundary in the input if they are within 5 bases of each
other. An output repeat copy matches an input orteth left and right boundaries match
that of the input copy. Theensitivity denoted bysS,, is defined as the ratio of the number
of output copies matching the input over the total number of input repeat copiedrughe
positive rate denoted byl is defined as the ratio of the number of output copies matching

the input over the total number of output copies.

In Tableg 2.l we show the accuracy of our algorithm on exact repeats of average length
50. Similarly, Tablé 22 reports the results for approximate repeats of average length 50. In
each table, we carried out 5 runs with gap lengths ranging from 50 to 250; for each run, we

executed our program 100 times. In every execution, the average number of distinct repeats is

27

input output
gap Se (%) 1}, (%)
ave. | worst | ave. | best| worst | ave. | best
50 | 95.8 | 98.8| 100 | 94.6 | 98.7 | 100
100 | 96.6 | 99.3| 100 | 96.6 | 99.3| 100
150 | 96.8 | 99.1| 100 | 96.8 | 99.0| 100
200 | 94.3 | 98.0| 100 | 94.3 | 97.9| 100
250 | 95.1 | 98.6| 100 | 95.1 | 98.5| 100

Table 2.2: Accuracy of approximate elementary repeats detection in simulated data.

10, the average frequency is 20, and the seed length is 15. Each row of the tables summarizes
the results of one run, namely the worst, the average, and the best accuracy of the 100 tests
of the run.

From the tables, we can make the following observations. First, the accuracy is remark-
ably high. The average value 6f is higher than 98% and the average valudpfs higher
than 95%, except for the approximate repeats of average length 200. Longer approximate
repeats are harder to detect, as the edit operations may occur in a narrow interval. In prac-
tice, however, elementary repeats are unlikely to be that long. The reason that the accuracy
of exact repeat detection is not 100% is that the random DNA strings we generated are not
“random” enough. As a result, there are additional repetitive patterns and fragmented re-
peats, which are not counted in validation but have been captured by our algorithm. Similar
situation occurs in approximate case.

Second, the performance of the algorithm for approximate repeats is more consistent than
that for exact repeats. This is due to the fact that the algorithm for approximate repeats is

more adaptive and thus able to handle more noisy input.

28

Third, in many cases, especially for approximate repeats, the vali$e isf close to
T,. This happens because often the algorithm detects one correct boundary while the other
boundary falls outside 5 bases of the correct one, and it causes a false positive and a false
negative simultaneously. These false positives, however, have long overlaps with correct

repeats.

2.4.2 Real biological repeats

We also test our algorithms on synthetic data when the repeats are true biological repeats, i.e.,
we insert copies of real repeats into synthetic DNA sequences. We choose the well-known
Alu repeats, a family of short interspersed elements (SINESs) that comprises roughly 10% of
the human genome. When exact copies of Alu are inserted into random DNA sequences, the
average accuracy of our method is above 96%. In approximate case, the average accuracy is
above 80%.

Here we test our algorithms on simulated data when the repeats are not random, but
true biological repeats. We chose the well-knofto repeats, a family of short interspersed
elements (SINESs) that comprises roughly 10% of the human genome. The lengths of real Alu
occurrences in human genome range from less than 50 bases to over 400 bases. We fixed the

length of the Alu repeat to 281 bases, which is the most typical length.

The accuracy in Table 3.3 is calculated in the same way as that in[Taple 2.1 and Table 2.2.
As shown in Tablé¢ 2|3, the average accuracy of finding Alu is comparable to that of finding
shorter random DNA, as in the Taljle 2.2. In addition, we found that, while most of the time

29

input output

gap Se (%) 1, (%)
ave. | exact| approx.| exact| approx.
50 96 84.2 96 82.7
100 | 99 84.8 99 83.2
150 | 99 80.6 99 79.0
200 | 98 79.8 98 78.0
250 | 97 83.7 97 82.2

Table 2.3: Average accuracy of exact and approximate repeat identification for Alu repeats.

GCCTGTAATCCCAGCactttgggaggccgaggtgggcggatcacttgaggtcgggagttc
aagaccagcctggccaacatggcgaaaccccgtctctactaaacataaaaaaattagtca
ggtgtggcgatgecgtGCCTGTAATCCCAGC Ctattcaggaggctgaggcaccagaattgce
ttgaacccaggaggtggaggttgcagtgaactgaagactgcgccacggcactccagcectg
ggcgacagagcaagactctgtctcaataaataaataattaa

Figure 2.2: The sequence of the Alu repeat.

the accuracy is extremely high (typically 100% for exact repeats), sometimes it is surpris-
ingly poor. The reason turned out to be that Alu is not an elementary repeat. Figure 2.2
shows the sequence of the Alu. Note that there are two exact internal repeats of length 15
(shown in upper cases), breaking the Alu repeat into two segments of roughly equal length.
It is reasonable to hypothesize that Alu came from two copies of some smaller repeat in the
evolutionary history. Using traditional approaches for repeat identification, it is difficult if not
impossible to find such kind of “embedded structure” in the repeats. We have also tried our
methods on several complete sequences of LTR retrotransposons from TREP database [53],
and found similar internal repeats. We suspect that some of them are actually LTRs and other

interesting domains.

30

Chapter 3

Oligo Design

In this chapter we address the problem of designing oligos from large EST unigene databases.
We aim to design efficient algorithms for finding two types of oligos, i.e. unique oligos
and popular oligos. Observe that finding unique oligos and finding repetitive patterns are
somewhat the opposite of each other.

In Section 3.l we introduce biological motivation, related computational methods, and
our contribution. Section 3.2 defines unique oligos and gives an algorithms for finding them.
Similarly, Sectior] 33 treats popular oligos. In Secfior] 3.4 we describe how to select top
candidate oligos according to practical criteria (e.g. GC content, melting temperature, self-
annealing). Section 3.5 presents empirical results of using the algorithms on synthetic and
real data, and using the designed oligos in wet lab experiments. This chapter is compiled

from [77,78,80].

31

3.1 Preliminaries

Expressed sequence ta@sSTs) are partial sequences of expressed genes, usually 200—700
bases long, which are generated by sequencing from one or both ends of cDNA. The infor-
mation in an EST allows researchers to infer functions of the gene based on similarity to
genes of known functions, source of tissue and timing of expression, and genetic map po-
sition. EST sequences have become widely accepted as a cost-effective method to gather
information about the majority of expressed genes in a number of systems. They can be used
to accelerate various research activities, including map-based cloning of genes that control
traits, comparative genome analysis, protein identification, and numerous methods that rely
on gene-specific oligonucleotides @rgos, for short) such as the DNA microarray technol-

ogy.

Due to their utility, speed with which they may be obtained, and the low cost associ-
ated with this technology, many individual scientists and large genome sequencing centers
have been generating hundreds of thousands of ESTs for public use. EST databases have
been growing exponentially fast since the first few hundreds sequences obtained in the early
nineties by Adamst al. [1], and now they represent the largest collection of genetic se-
quences. As of June 2006, 49 organisms have morelthtaBSTs in NCBI's dbESTI[11],
including barley Hordeum vulgarer subsp. vulgarewith 437321 ESTs.

With the advent of whole genome sequencing, it may appear that ESTs have lost some of

its appeal. However, the genomes of many organisms that are important to society, including

32

the majority of crop plants, have not yet been fully sequenced, and the prospects for large-
scale funding to support the sequencing of any but a few in the immediate future is slim to
none. In addition, several of our most important crop plants have genomes that are of daunt-
ing sizes and present special computational challenges because they are composed mostly
of highly repetitive DNA. For example, thEriticeae(wheat, barley and rye) genomes, each

with a size of aboub x 10° base pairs per haploid genome (this is about twice the size of
maize, 12 times the size of rice, and 35 times the size of the Arabidopsis genomes), are too
large for us to seriously consider whole genome sequencing at the present time.

Among the set of EST databases, we are especially interested in the dataset of bar-
ley (Hordeum vulgarg Barley is premiere model for Triticeae plants due to its diploid
genome and a rich legacy of mutant collections, germplasm diversity, mapping popula-
tions (seehttp://www.css.orst.edu/barley/nabgmp/nabgmp.htm), and the
recent accumulation of other genomics resources such as/BAC [76] and cDNA libraries [21,
54]. Nearly 300,000 publicly available ESTs derived from barley cDNA libraries are cur-
rently present in dbEST. These sequences have been quality-trimmed, cleaned of vector and
other contaminating sequences, pre-clustered using the softvam. Thttp://www.
tigr.org/tdb/tgi/software/) and clustered into final assemblies of “contigs” (i.e.,
overlapping EST sequences) and “singletons” (i.e., non-overlapping EST sequences) using
CAP3 [41]. The collection of the singletons and consensus sequences of the contigs, called
unigenesform our main dataset. In the rest of the chapter, we consider unigene databases as

the input data of our algorithms.

33

http://www.css.orst.edu/barley/nabgmp/nabgmp.htm
http://www.tigr.org/tdb/tgi/software/
http://www.tigr.org/tdb/tgi/software/

3.1.1 Our Contribution

We study two computational problems arising in the selection of short olggs 20-50
bases) from a large unigene database. One is to identify oligos thahigeeto each uni-

gene in the database. The other is to identify oligos that are popular among the unigenes.
More precisely, thainique oligoproblem asks for the set of all oligos each of which ap-
pears (exactly) in one unigene sequence but does not appear (exactly or approximately) in
any other unigene sequence, whereagptiyaular oligoproblem asks for a list of oligos that
appear (exactly or approximately) in the largest number of unigenes. Note that a popular
oligo does not necessarily have to appear exactly in any unigene.

A unique oligo can be thought of as a “signature” that distinguishes a unigene from all the
others. Unique oligos are particularly valuable as locus-specific PCR primers for placement
of unigenes at single positions on a genetic linkage map, on microarrays for studies of the
expression of specific genes, and to probe genomic libraries in search of specific genes ([37]).

Popular oligos can be used to screen efficiently large genomic library. They allow one to
simultaneously identify a large number of genomic clones that carry expressed genes using
a relatively small number of (popular) probes and thus save considerable amounts of money.
In particular for the database under analysis, it has been shown previously by a number
of independent methods that the expressed genes in Triticeae are concentrated in a small
fraction of the total genome. In barley, this portion of the genome, often referred to as the
gene-spacenas been estimated to be only 12% of the total genome [7]. If this is indeed true,

then at most 12% of the clones in a typical BAC library would carry expressed genes, and

34

therefore also the vast majority of barley genes could be sequenced by focusing only on this
12% of the genome. An efficient method to reveal the small portion of BAC clones derived
from the gene-space has the potential for tremendous cost savings in the context of obtaining
the sequences of the vast majority of barley genes. The most commonly used barley BAC
library has a 6.3 fold genome coverage, 17-filter set with a total of 313,344 clones [76]. This
number of filters is inconvenient and costly to handle, and the total number of BAC clones is
intractable for whole genome physical mapping or sequencing. However, a reduction of this
library to a gene-space of only 12% of the total would make it fit onto two filters that would
comprise only about 600 Mb. This is about the same size as the rice genome, which has been
recently sequenced. A solution for the popular oligo problem should make it possible to
develop an effective greedy approach to BAC library screening, enabling a very inexpensive
method of identifying a large portion of the BAC clones from the gene-space. This would also
likely accelerate progress in many crop plant and other systems that are not being considered
for whole genome sequencing.

In this chapter, we present an efficient algorithm to identify all unique oligos in the uni-
genes and an efficient heuristic algorithm to enumerate the most popular oligos. Although
the unique and popular oligos problems are complementary in some sense, the two algo-
rithms are very different because unique oligos are required to appear in the unigenes while
the popular oligos are not. In particular, the heuristic algorithm for popular oligos is much
more involved than that for unique oligos, although their (average) running times are similar.

The algorithms combine well-established algorithmic and data structuring techniques such

35

as hashing, approximate string matching, and clustering, and take advantage of the facts that
(i) the number of mismatches allowed in these problems is usually small and (ii) we usually
require a pair of approximately matched strings to share a long common substring (called a
common factoin [61]). These algorithms have been carefully engineered to achieve satis-
factory speeds on PCs, by taking into account the distribution of the frequencies of the words
in the input unigene dataset. For example, running each of the algorithms for the barley uni-
gene dataset from ARVEST takes only a couple of hours (on a 1.2 GHz AMD machine).
This is a great improvement over other brute-force methods, like the ones based on BLAST.
For example, one can identify unique oligos by repeatedly running BLAST for each uni-
gene sequence against the entire dataset. This was the strategy previously employed by the
HARVEST researchers. Simulations results show that the number of missed positives by the
heuristic algorithm for popular oligos is very limited and can be controlled very effectively

by adjusting the parameters.

In the context of DNA hybridization, most previous approaches define the specificity
of an g-mer in terms of the number of mismatches to the target sequences, although some
also take into account its physical and structural characteristics such as melting temperature,
free-energy, GC-content, and secondary structure([52, 64]._In [61], Rahman took a more
optimistic approach and used the length of the longest common substring (called the longest
common factor or LCF) as a measure of specificity. Given the nature of our target applica-

tions, we will take a conservative approach in the definitions of unique and popular oligos.

36

3.1.2 Notations

We denote the input dataset&s= {x1, s, ... xx }, where the generic string is an unigene
sequence over the alphabet {A, C, G, T} andk is the cardinality of the set. Let; denote
the length of the-th sequencel < i < k. We setn = Zle n;, which represents the total
size of the input. A string (or oligo) fror is called any-merif its length isq.

Given a string4, we write A[i], 1 < i < |A|, to indicate the-th symbol inA. We use
Alt, j] as a shorthand for the substriddi| Afi + 1] ... A[j] wherel < i < j < n, with the
convention thatd[z,i] = A[:]. Substrings in the formi[1, j] correspond to therefixesof
A, and substrings in the form|i, n| to thesuffixesof A. A string B occursat position: of
another stringd if B[1] = A[il, ..., B[l] = Ali + [— 1], wherel = |B).

Given two stringsA and B of the same length, we denote B¥(A, B) the Hamming

distance betweeA and B, that is, the number of mismatches betwetand 5.

3.2 Unique oligo

The unique oligo problem has been studied in the contegtalie desigr52,/61,/64]. The
algorithms in[[52 64] consider physical and structural properties of oligos and are very time
consuming. (The algorithm in [64] also uses BLAST.) The algorithm presentédlin [61] is,
on the other hand, purely combinatorial. It uses suffix arrays instead of hash tables, and
requires approximately 50 hours for a dataset of 40 Mb on a high-performance Compaq

Alpha machine with 16 Gb of RAM. However, his definition of unique oligos is slightly

37

different from ours.

3.2.1 Definition

Recall that a unique oligo perfectly matches a unigene (called target) but does not match any
other unigenes (called nontargets). Therefore, the definition of unique oligo depends on the
criterion of whether the oligo candidate matches the nontarget sequences. We call the latter

matching as “nontarget-match”.

Definition 3.2.1 Given a set of integer pair® = {(l1,d1), ..., (ln,dy)}, two stringsA and
B of equal length are said toontarget-matcleach other, if there exists a pajt’, d’) € P
and there exist a substring’ of A and a substringB’ of B starting at the same position,

such that:

o |A|=|B|=r,and

e H(A',B') <d,whereH(A’, B') is the number of mismatches betwetrand B'.

If string A nontarget-matches a substring of a unigéneghen we say thatl nontarget-
matches the unigen&. For specific projects, the thresholds IBtcan be decided accord-
ingly. For example, in[80]P = {(16,0), (20,1), (24, 2), (30, 3), (36,4)}. We call a pair of

integers inP as oneconditionof nontarget-match.

Definition 3.2.2 Given a set of unigenes and a definition of nontarget-matcimjgue oligo
is a string that appears exactly in one unigene but nontarget-matches none of the other uni-

genes.

38

Note that in the above definition the lendtlof the oligos is not fixed. Theoretically,
can range from one to the maximum length of the unigenes. Practicediyges from 25 to
50 (e.g./ = 36 in [80]). Our algorithm assumes that all the output oligos are of equal length,

which satisfies most practical needs.

3.2.2 Algorithm

We design an algorithm for finding unique oligos as follows. For each subsfrimgeach
unigene, we check whethér nontarget-matches any other unigene. To become a candidate
oligo, the oligo should also “survive” the filtration step (to be described in S¢ctipn 3.4). Since
filtration takes much less time than checking nontarget-match and many candidates fail the
filtration, we perform the filtration step first. In the rest of this section we focus on nontarget-
match, and we assume the filtration has been done.

Our strategy is to prune the search spacejdgyam filtration. The algorithm is based
on the following observation. Assume thatand B are twol’-mers such that/ (A, B) <
d. Divide A andB intot = |d/2] + 1 substrings. Thatisi = AjA,--- A, andB =
B1Bs - - - By, where the length of each substringqgis= [1’/t], except possibly for the last
one. In practice, one can always chodsendd so that!’ is a multiple oft and henced and
B can be decomposed intsubstrings of length, which we callseedgalso see Sectidn 2.3
in Chaptef). It is easy to see that singéA, B) < d, at least one of the seeds dfhas
at most one mismatch with the corresponding seefl.dEach conditior(!’, d) is associated

with a seed length. For multiple conditions, we must choose the shortest seed.

39

Based on this idea, we design an efficient two-phase algorithm. In the first phase, we
index all seeds from the unigenes into a table, cadksed-tablesuch that given a query seed
s all the substrings in the unigenes that have at most one mismatchs widh be output
efficiently. In the second phase, for every oligo candid&teve locate every substring
in the unigenes that have one seed in common Withsing the seed-table. K nontarget-
matches, thenA is discarded. On average, the number of such subsiiisgnuch smaller
than the size of the unigene database, and we thus improve running time.

Phase 1. (SEED-INDEX) We hash allg-mers (seeds) from the input unigenes into a
dictionary (seed-table) with? entries. (If4? cannot fit in the main memory, one could use
a hash table of an appropriate size.) Each entry of the table points to a list of locations
where the;-mer occurs in the unigene sequences. Using the table we can immediately locate
identical seeds in the unigenes. We also collect seeds that have exactly one mismatch with
each other as follows. For each table entry corresponding to a/seedrecord a list of other
seeds that have exactly one mismatch witby looking up table entries that correspond to
all the 1-mutants ofy. This list is called anutant listof y.

Phase 2.(UNIQUE-TEST) For each oligo candidate from unigeneA, we query all its
seeds against the seed-table to locate a list of potential mag¢hes, y; in the unigenes
other thanA. Then we verify whether nontarget-matches any of thye The verification of
each condition of nontarget-match (see Definifion 3.2.1) can be done by counting the number
of mismatches for every,-mer region between andy;.

In the practice of unigene data analysis, we also need to consider the reverse strand of

40

each unigene. It is easy to modify the above algorithm to take this into account without a
significant increase in time complexity.

Time complexity. Assume that the total number of bases in the unigene database is
and the length of seed is The time complexity of phase one is simghfqn + 49), where
the second term reflects the time needed to initialize the seed-table. If we insert seeds into the
table in lexicographic order, and we consider the overlapping between two successive seeds,
then the time can be easily reduced(m + 49).

The time complexity of phase two 8(n}), whereV is the average time for verifying
oligo candidates by checking nontarget-match. Cle&flgepends on théltering efficiency
of seeds (i.e., the number of matches found divided by the number of potential matches)
and the time for verifying nontarget-match. We do not analyze the filtering efficiency here.
But one need to make sure that the seed leggthnot too small, otherwise there may be
too many potential matches. On the other handhould not be too big, since the size of

seed-table depends exponentiallygon

3.2.3 Group-unique oligo

A unigene groups a collection of unigene sequences that are similar with each other (e.g.,
they could originate from a gene family). It is useful to design oligos that are specific to a
unigene group rather than an individual unigenel_In [20], a method called Hierarchical Probe
Design HPD) is proposed for finding long oligos from conserved functional gemtD

uses clustering methods based on pairwise comparison, e.g. UPGMA, neighbor-joining etc.

41

It has been tested on only small datasets of two types of genes of totally 911 sequences. Itis

easy to extend the idea for unique oligos to “group-unique oligos”.

Definition 3.2.3 For a given unigene grou@ from a set of unigenek, agroup-unique oligo
is a DNA string that appear exactly in each unigene&irbut does not nontarget-match any

unigene ofX notinG.

The algorithm of designing group-unique oligos is similar to that for unique oligos, except
that the candidates are from every unigenes of the group. We scan unigenes of a group and
then cluster-mer substrings into a table such that identiceders can be accessed by the
same entry. Clearly this can be done in linear time. The rest is similar to unique oligo

algorithm.

3.3 Popular oligo

The problem of finding infrequent and frequent patterns in sequences is a common task
called pattern discovery. A quite large family of pattern discovery algorithms has been pro-
posed in the literature and implemented in software tools. Without pretending to be exhaus-
tive, we mention MEME [4], PRATT [44],43], TEIRESIAS [62], CONSENSUS[40], GIBBS
SAMPLER [50,/56], WINNOWER [58,/45], RROJECTION[72,/13], VERBUMCULUS[2], M1-

TRA [26], among others. Although these tools have been demonstrated to perform very well
on small and medium-size datasets, they cannot handle large datasets such as the barley uni-
gene dataset that we are interested in. In particular, some of these tools were designed to

42

attack the “challenge” posed by Pevzner and $zé [58], which is in the order of a few Kb.
Among the more general and efficient tools, we tried to remRESIASon the 28 Mb barley
unigene dataset on an 1.2GHz Athlon CPU with 1GB of RAM, without being able to obtain

any result (probably due to lack of memory).

3.3.1 Definition

Simply speaking, a popular oligo is a string that approximately matches as many unigenes
as possible. Analogous to the Definitjon 3]2.1 of nontarget-match for unique oligos, we will
define “target-match” between an oligo and a substring in unigenes to control the specificity
of popular oligos. Again, we consider only mismatches. If the number of mismatches is too
small, we may miss valuable oligos; if it is too big, we may get many spurious popular oligos.
Therefore, the definition of target-match is crucial for the quality of output popular oligos.
In the following we define two versions of target-match, both of which require the pres-

ence of a perfectly matching segment called “core”. For the rest of the section, we assume

that strings4d and B have equal length

Definition 3.3.1 We say that there is eoreof length/. betweend and B if A and B can be
partitioned into substrings ad = A; A, A3 and B = B, By B3 with |A;| = | B;| such that (i)

|A2| = lc, and (||) A2 = B,.

In the rest of the chapter, we assume that the length oficasegiven. In [77] 73, 80],

we have fixed,. = 20.

43

The difference between the following two definitions of target-match lays in the number
of mismatches allowed in the regions flanking the core. The first definition simply sets an

upper bound for the total number of mismatches outside the core.

Definition 3.3.2 We say that a stringl target-matchea string B if (i) there is a core between

them, and (i)H (A, B) < dpax-

The second definition considers not only the number of mismatches but also their loca-
tions. The parameters are valid only for= 36 ([80]). The threshold values should be

changed for different values é6fandi...

Definition 3.3.3 We say thatd and B target-matcheach other, if (i)there is a core between

A and B, and (ii)either one of the following two conditions is satisfied

e H(A,B) <3,o0r

e H(A,B)=3,and

— for any pair A’, B’ of 25-mers obtained by extending the cofé(A’, B') < 2,

and

— for any pair A”, B” of 30-mers obtained by extending the cof&(A”, B") < 3.

We call any string that target-matchas amutantof A, and the set of all mutants of as

the neighborhoodof A. If a popular oligo target-matches a substring in a unigene, we say
that the oligocoversthe unigene. Le& be the given set of unigenes. We call the number of
distinct unigenes fromt’ covered byA as the number afolorsof A in X, denoted”y (A).

44

Definition 3.3.4 Given a set of unigene¥ and a positive integef’,..;,, a popular oligois a

string A of lengthl such thatCy (A) > Chin.

3.3.2 Algorithm

Since popular oligos are not required to appear exactly in the unigene sequences, the number
of oligo candidates is much bigger than the size of unigenes. If we were to use Defini-
tion , the number of mutants of an oligo of lengik @(("dZC)Bd), wherel. is the core

length andi the maximum number of mismatches. For example, when3, [= 33, and

l. = 20, (")7)3% = ()3 = 7722 for the barley dataset. Hence, the straightforward al-
gorithm would have to count the number of colors for aboi#t2 - 28 x 10 = 217 x 10°

[-mers. Therefore, the “brute-force” method that enumerates neighborhobdseo$ in the
unigenes is computationally impractical, due to its memory requirement as soon as the input
size reaches the order of hundreds of thousands of bases (like the barley dataset).

We can reduce the search space using the same idea as in the algorithm for unique oligos,
except that here the role of seeds is played by cores. Observe that if a popular oligo covers
many unigenes, then many of these unigenes must contain lésgibstrings that share
common cores. Based on this observation, we propose a heuristic strategy that first clusters
thel-mers in the unigene sequences into groups by their cores, and then enumerates candidate
[-mers by comparing the members of each cluster in a hierarchical way.

An outline of the algorithm is illustrated in Figure B.1. Here, we determine the popularity

of the coresi(e., length{. substrings) from the unigenes in the first step. For each popular

45

core, we consider extension of the cores iktners by including flanking regions and clus-

ter them using a well-known hierarchical clustering method, call@deighted pair group
method with arithmetic meguPGMA) [71]. We recall that UPGMA builds the tree bottom-

up in a greedy fashion by merging groups (or subtrees) of data points that have the smallest
average distance. Based on the clustering tree, we compute the common oligos shared by
thel-mers by performing set intersection. These common oligos shared by/rnaens be-

come candidate popular oligos. Finally, we count the number of colors of these candidates,
and output the oligos with at leagtcolors. A more detailed description is given below. A

complete example of the algorithm on a toy dataset is also given at appendix.

Phase 1.We compute the number of colors for §imers in the unigenes to determine
whether they could be candidate cores for popiHarers, using a hash table. According
to our definition, a popular oligo should have a popular core. We therefore set a threshold
T, on the minimum number of colors of each popular core, dependind.gn (., and the
set of unigenest’. All cores that have a number of colors bel@w are filtered out, and
considered “unpopular”. However, since amer can target-match anothiemer with any
of its| — d + 1 cores, it is possible that we might miss some popular oligos that critically
depend on unpopular core. The paramé&terepresents a trade-off between precision and
efficiency. We will show in Section 3.5 the effect of changifigon the output. We will see
that in practice we might miss only a negligible number of popular oligos.

Phase 2. Here we collect the substrings flanking the popular cores. For each popular

core, we construdt— . + 1 sets of substrings, one for each possible extension of the core

46

Output Input

oligos EST
Hashing
Compute
Coverage

[
[
[

Compute
Coverage

17
I

L 0] <—

I
I

Compression
& correction

Table of

Table of cores popular cores

[z

Select

—= 1] 2]3]—

= 1] 2

Collect flanking regions

i

] 17 sets of 36-mers that share the core at a specific position
]
1 [1 [| 1
]
] 2 [. 2 [| 2N
] 3 [. 3 [SHEEN
set 1 set 2 set 17
Discard
unsuitable
oligos
Build | tree
]
]
]
]
] Compute candidates Cut tree
—_———————————
]
] :
Clustering

List of candidates

Figure 3.1: An overview of the algorithm for selecting popular oligos. For convenience of
illustration, the length of the oligos is assumed tolbe 36, and the length of the cores is
assumed to be = 20.

into an/-mer.
Phase 3. For each set of extenddemers, we would like to identify all-mers (oligo

candidates) that target-match many of these substrings. In order to achieve this efficiently,

a7

we first cluster the substrings according to their mutual Hamming distance using the hierar-
chical clustering method UPGMA. In the process of building the clustering tree, whenever
the Hamming distance between some leaves in the tree is zero we compress the distance ma-
trix by combining the identical strings into one entry. This significantly reduces the running
time not only because the tree becomes smaller, but also because the number of common
mutants of two different-mers is much less than that of two identical ones. As we can see
later, a significant proportion of the running time is spent on the intersection of the sets of
d-mutants. Compressing the distance matrices avoids intersecting identical&etsitaints,

which is expensive and also useless. We then enumerate the set of mutants for each substring
represented at the leaves and traverse the tree bottom-up.

At each internal node, we compute the intersection of the two sets attached to the chil-
dren. This intersection represents all thmers that target-match all the leaves (substrings)
under the node. As soon as the intersection of some internal nodeuségcomes empty,
we cut the tree at. Each subtree represents a cluster, and the detnefrs attached to the
root are the elements of the cluster. The size of the cluster is therefore equal to the number of
leaves in the tree. Because small clusters are unlikely to contain popular oligos, we discard
all trees whose size is smaller th@f,;,, (the minimum number of colors of a popular oligo).

At the end of this process, we obtain a collection of sets of candidate popular oligos.

Phase 4.Given the candidate popular oligos, we do the filtration step to discard unsuit-

able candidates and select a subset of oligos to maximize coverage rate. Because the oligo

filtration and selection steps are necessary also for unique oligo, we will discuss these steps

48

in Sectior 3.4.

Time complexity. Phase 1 costs tim@(l.n). In phase 2, if the number of popular
cores selected in the first steppsand the average number of occurrence of the cores is
this phase cost®(nrl)). For phase 3, the time for building a UPGMA tree, including the
computation of the distance matrix,(¥ (I — [.)r?), wherer stands for the number of strings
to be clustered. Since a (binary) UPGMA tree witheaves ha®r — 1 nodes, the time
for traversing (and pruning) the tree @(r('/<)3), where (' /*)3? is the upper-bound of
the number of mutants at each leaf, for both Definifion 3.3.2 and Definition| 3.3.3 of target-
match. Here we assume that the set intersection can be done in linear time using hashing
techniques. Finally for phase 4, if the total number of candidates isounting the colors

for the candidates, excluding the time for radix-sort, costs tinen(l — I.)).

3.4 Oligo filtration and selection

As it turns out, the set of unique, popular and group-unique oligos generated by the algo-
rithms described above cannot be used directly because in practice it produces too many
candidates. For example, when the threstigldn the color of the cores is 5, the number of
candidates of popular oligos generated from the Barley unigene database is about 527 mil-
lions. In this section, we describe post-processing phase for reducing the number of candidate
oligos.

In the first step of post-processing, callelyo filtration, we discard unsuitable oligos

49

based on GC content, melting temperatures, self-annealing of 36-mers, low-complexity, and
the presence of repetitive regions. All these parameters can be adjusted by the user. The melt-
ing temperaturd’, is calculated using the formula in [12] as implemented mNRER3 [65].
Self-annealing of oligos is determined by performing an end-free sequence alignment be-
tween the 22-mer prefix and the reverse complement of the 22-mer suffix of an oligo. An
oligo is discarded if the alignment score is higher than a predetermined threshold. We use
the program DsT [38] to determine low-complexity regions in oligos. Finally, we filter

out those oligos that have significant matches against repeat database, e.g., Triticeae Repeat
Sequence Database (TRIBRp://wheat.pw.usda.gov/ITMI/Repeats/) in the

case of barley, or any other repeat database provided by the user.

In the second step of post-processing, we select oligos according to their distribution
among unigenes. Here, for a popular oligo, the “distribution” means the set of covered
unigenes, while for a unique oligo it means the location within a unigene. Our objective
is to select a small number of oligos that can represent as much information about unigenes

as possible.

Unique oligo selection. The selected unique oligos should be as different as possible. Be-
cause a substring of lengttcan overlag — 1 symbols with other substrings, oligos whose
position is close to each other in a unigene are more likely to have similar composition.
However, we prefer oligos that originate from diverse parts of unigene sequences. There-

fore, the objective is to select a subset of oligos whose positions are as separated as possible.

50

http://wheat.pw.usda.gov/ITMI/Repeats/

We formulate the problem as a combinatorial optimization problem calb@dsest subse-
guence Given a sequence of integers po, ..., p, in increasing order, find a subsequence of
sizem, such that the minimum difference of two successive numbers in the subsequence is
maximized.

An easy dynamic programming algorithm[(_ [25]) can solve the problem in polynomial
time. Let us call the minimum difference of two successive numbegagas Let D [i, j|
denote the maximum gap among the sequencgésiambers ending witl®;, for1 <: < m

andl < j < m. We have the following recursive relation:

Dli, j] = max(min(D[k, j — 1], P, — Py)).

k<i

By binary searching fok giving the maximum, we can solve the problem in ti@gm log n).
The running time can be improved &@(n + mlognlog(n/m)) ([18]). However, since al-
gorithm in [18] is complicated and the sparsest subsequence problem is not the bottleneck of

the whole system, we did not employ this faster algorithm.

Popular oligo selection. In general, each popular oligo covers a set of unigenes, and each
unigene is covered by a set of oligos. For a Seif oligos, thecoverage ratdas the ratio
between the number of unigenes covered by the oligas amd the size of the se&t. Our
objective is to maximize the coverage rate, i.e., to select a set of popular 6lifjom the

large pool of candidates, such that the number of covered unigenes is maximized and the

number of selected popular oligos is minimized. More specifically, while we are trying to

51

reduce the size af, we make sure that the number of covered unigenes will not drop. It
turns out that the general problem of oligo compression is a variant ofEMECSVERING
problem, which is known to be NP-complete (se€ [30]).

Since the general problem is NP-complete, it is unlikely that there exists a polynomial-
time algorithm that finds the optimal solution. As a workaround, we use a greedy strategy
that, in general, will find a suboptimal solution. The following paragraph is a rephrasing of
the greedy algorithm for theeS COVERING ([42]) problem in the context of popular oligo
selection.

In the first step, for each covered unigene we select a set of oligos with high colors, as
follows. When a candidate oligo is generated, we obtain the set of unigenes covered by
w. For each covered unigenes, we decide whether aligbould be discarded or kept as the
top candidate. At the end of this step, we get a pool of unigenes each of which is covered
by several oligos. In the second step, we select an oligo with the highest color, and remove
all unigenes covered by this oligo from the unigene pool. Then, we update the colors of all
other oligos. We repeat the second step until the unigene pool becomes empty. Note that it is
important to update the colors iteratively because many candidates of high initial colors have
big overlaps of covered unigenes with each other. The method is simple and space efficient
since it can compress oligos on-line and avoid storing hundreds of millions of candidates in

main memory.

52

3.5 Results

3.5.1 Implementation

We have implemented the above algorithms into the softwane @SpPAwN, developed us-

ing the GNU C++ compiler under the Linux operating system. The executable for Linux/i386
can be downloaded from theL@ 0 SPAWN web site. The source code is also available from

the same web site under the GPL license. Any platform for which GNU C++ is available
(Windows and MacOS among others) would be able to compile and run the stand-alone
software. The web server is running ltp://oligospawn.ucr.edu/ and it was
developed using PH{tp://www.php.net/), which is an open-source scripting lan-
guage. The web server has been tested with Netscape, Mozilla, Safari, and Internet Explorer

(see([80] for more details).

3.5.2 Simulations

Popular oligo. To evaluate the performance of our algorithm for designing popular oligos,
we first ran a few simulations as follows. We generated a set of artificial unigenes by creat-
ing first a set oft random sequences and then inserting a controlled number of approximate
occurrences of a given set of oligos, i.e., each of the inserted strings target-match one of the
given oligos. We used the Definitipn 3.B8.2 for target match, where the number of mismatches
outside the core is at mogt The initial sets of oligos, denoted By, . . . , I, were also gener-

ated randomly. Each oligh was assigned a predetermined number of calrdVe decided

53

http://oligospawn.ucr.edu/
http://www.php.net/

d=2 | d=3

T. =10 | 0.0155| 0.0500
T. =15 | 0.0003| 0.0033
T, =20 | 0.0048| 0.0005
T, =25 | 0.0008| 0.0023
T, =30 | 0.0005| 0.0028

Table 3.1: The average relative errors between the number of colors in the input and the
number of colors in output for a simulated experiment 1.44 x 10°, ¢ = 2000, [. = 20,
Cmax = 100, s = 100).

that the distribution of the”; should be Gaussian, i.e., we defin@d= c,..e™"/2/v/2m,
wherec,.x 1S a fixed constant which determines the maximum number of colors. As said,
the positions in-between the oligos were filled with random symbols over the DNA alphabet.

We then ran our program for popular oligos on the artificial unigenes dataset and output
a set of candidate oligasy, . . ., O; with their respective numbers of colotg, ..., C}. The
output oligos were sorted by colors, thatis> C7, if i < j.

Since the output contained redundant candidates that came from the mutations of the
original popular oligos, we removed those candidates that were mutants of another oligo with
an higher number of colors. More precisely(Jf was a mutant 00;, and1 < i < j <,
thenO; was discarded. This “compression step” did not eliminate good candidates for the
following reason. Since the input oligds, . . . , I, were generated randomly they were very
unlikely to be similar. As a consequence, the corresponding output oligos were also unlikely
to be eliminated. Moreover, the above extra step is unnecessary for real data, since a good

oligos may not match exactly in unigenes. It is only for the convenience of validation

Finally, we compared the pair, C') with (O, C”). The more similafO, C")isto (I, C),

54

the better is our algorithm. Recall thatand O were sorted by decreasing number of of
colors. We compared the entries(ih C') with the ones i O, C"), position by position. For
eachl < i < u, whereu = min(s, t), we computed the average difference betw€eand

C'asE = (1/u) Y"1, ‘Cic_{q{'. If we assume that andO contain the same set of oligos, then

the smaller isF, the more similar ig7, C') to (O, C"). To validate this assumption, we also
searched the list of oligokin O, to determine whether we missed completely some oligos.

Tabl€g 3.1 shows the value &ffor four runs of the program on a datasetiof 1.44 x 10°
bases composed iy= 2000 sequences each of size0. We generated a set ef= 100
oligos with a maximum number of colorg,., = 100. In the analysis, we fixed the length
of the core to bé. = 20, whereas the maximum number of mismatclesitside the core
and the threshold’ were varied. The results show that the average relative error is below
2%. We also compared the list of input oligos with the list of output oligos and we found
that sometimes the program misses one or two oligos out of 100. However, the number of
colors of these missed oligos is always near the threshol@e never miss an oligo whose
number of color is abové,. + 10.

Group-unique oligo. We also use BLAST to test th@igo specificityof group-unique
oligos, where the specificity is the likelihood of matching nontarget unigenes. Since unique
oligos can be regarded as a special case of group-unique oligos where each group consists of
one unigene, the simulation can also be applied to unique oligos.

Running on a set’ of unigenes, QIGOSPAWN produces a list of oligos, where each oligo

P corresponds to a set of unigengs Then, we query oligd” againstt’ using BLAST.

55

E-value cut-off| 1e-008 1e-007 1e-006 1e-005 0.0001 0.001
sensitivity(%) | 95.9 95.4 94.9 94.2 93.2 90.
selectivity(%) | 99.2 99.6 99.8 99.9 100 100

I~

Table 3.2: Specificity of group-unique oligo by @0SPAWN validated by BLAST.

With a specified threshold of E-value, we obtain a list of unigene&’jrdenoted byl,,
which P covers by the matching criteria of BLAST. LE} denote the actual list of unigenes

that oligo P covers. Then, we set the sensitivity 35, U, NV, |/ >_, [V, and selectivity as

2 [Up V132, [Up .

In Tablg 3.2, each column corresponds to a threshold of BLAST e-value. Smaller e-value
cut means that the BLAST matches between oligos and the target regions in unigenes are
less likely to be random. Therefore, the bigger e-value cut means more oligo occurrences
will be found by BLAST. When e-value cuts increase from left to right, the sensitivity of
OLIGOSPAWN decreases and selectivity increases. When e-value cut is 1e-008, even exact
matches between oligos and unigenes are considered not significant enough by BLAST.

Therefore, the specificity of group-unique oligos designed bycO SPAWN is high.

3.5.3 Running on real data

The main dataset is a collection barley unigenes fromrRVWEST. Before doing the searches,

we first cleaned the dataset by removing PolyT and PolyA repeats.

The efficiency of our algorithm critically depends on the statistical distribution of the

seeds in the dictionary. The statistics of the seeds in our experiment (before the extension

56

number of occurrencesnumber of seeds
0 242399
1-9 3063288

10-19 708745

20-29 120698
30-39 31637
40-49 11908
50-5049 15629

Table 3.3: Distribution of frequencies of seeds in barley unigenes. The left column is the
range of the number of occurrences. The right column is the number of seeds with a certain
number of occurrences.

phase) is shown in TabJe 3.3. Clearly, most seeds occur lesth@mes in the unigenes
and this is the main reason why our algorithm was able to solve the dataset efficiently. The

final distribution of unique oligos is shown in Figure|3.2.

Our second task was to search for popular oligos with leihgth 36 and core length
l. = 20. We considered different choices for the maximum number of mismattbatside
the core and the threshold on the minimum number of colors for the popular cores. The
thresholdC,,,;, on the size the clusters was set equal to the value of threghold

The distribution of the number of colors of the cores is shown in Table 3.4. From the table
we can see that the number of cores decreases almost exponentially as the number of colors
increases. On the other hand, cores with low colors are unlikely to contribute to popular

oligos. Therefore, it is important to filter them out to increase the efficiency.

The running time of this program varies with the parameteasnd 7., as shown in the
Figure[3.8. The memory used in the program was mainly for storing the candidate popular
oligos. In general, about 64 MB suffices since the program reuses the memory frequently.

57

Number of unigenes with unique oligos at a certain percentage
100000 T T T

"UOJ)I’OIf”e‘] .dat"

10000 |+ b

1000 - s 1

10 1

LI

0 20 40 60 80 100
Percentage of unique oligos in 36-mers of one unigene

Number of unigenes with specifice percentage (log scale)

Thu Sep 30 20:22:00 2004

Figure 3.2: Distribution of unique oligos. The horizontal axis stands for the percentage of
unigue oligos over alB6-mers in a unigene, and the vertical axis stands for the number of
unigenes whose unique oligos are at a certain percentage of3mers.

Figure] 3.3 also shows the number of candidates generated by the algorithm (in millions),
the number of unigenes covered, the final number of popular oligos, and the coverage ratio,

for different choices of the threshold.

3.5.4 Overgo hybridization

Popular 36-mer oligos were generated by an older version of the softwae@GSPAWN with
thresholdl. = 4, GC content in the range 45-56%. Since the older version.at QSPAWN
did not yet offer filtering against repeat databases this process was supplemented by some

58

colors | number of cores
1 22523412
2-10 2128677
11-20 5148
21-30 1131
31-40 492
41-50 346
51-60 242
61-70 77
71-80 34
81-90 29
91-100 43
101-176 19

Table 3.4: Distribution of the number of colors of the cores. The left column is the range
of the number of colors. The right column is the number of cores with a certain number of
color.

manual actions, as follows. Oligos matching repetitive DNA and rRNA were filtered out
with BLAST searches (BLASTn) against TREP and the TIGRimineaerepeat databases
(Hordeum, Oryza, Sorghum, Triticum, J€http://www.tigr.org/tdb/e2k1/plant.

repeats/ |[57]). Following this search, 36-mers with 26 or more consecutive matches to
repetitive sequences were discarded. Out of 698 initially proposed popular oligos, a total of
25 were discarded by this method. All these filtering step are now includediBASPAWN

(in particular BLAST is not required to run DGO SPAWN).

The popular 36-mers were also “blasted” (by BLASTX) against the SwissPrbitgmn (
/lus.expasy.org/sprot/) and NR protein databases for annotation purposes. The
36-mers with nine of twelve possible amino acids identical to the subject sequence were cho-
sen for further testing. Out of the initial 698 popular 36-mers analyzed, 134 passed this crite-

rion. Finally, popular oligos classified as transcription and signal transduction components,

59

http://www.tigr.org/tdb/e2k1/plant.repeats/
http://www.tigr.org/tdb/e2k1/plant.repeats/
http://us.expasy.org/sprot/
http://us.expasy.org/sprot/

10000

1000

100

...............

STTAA

core coverage threshold

| —B—unigene covered —O— oligos —A— candidates (M) —}—time (min) —>&— coverage ratio |

Figure 3.3: Results of running the algorithm on the Barley dataset. Shown are the number
of candidates generated by the algorithm (in millions), the number of unigenes covered, the
final number of popular oligos, the coverage ratio, and the time taken by the algorithm (for
different choices of}.).

a total of 18 out of these 134, were used for probing the Morex barley BAC liirary [76].

Overgo labeling and hybridization was done essentially as described bpRig63,(36].
Briefly, probes were radioactively labeled individually wittP-dATP and*2P-dCTP. For
background detection, a 36-mer representindgaseherichia colgenome was also labeled [36].
Hybridization using a mixture of all 19 probes was then performed on high-density filters of
the 6.3x Morex barley BAC library[[76], followed by washing and exposure to autoradiog-
raphy film [63]. An average of 140 BAC clones per filter (17 filters) were scored as positive,
yielding a total of about 2,400 positive BAC clones from only 18 popular overgos. Screening
with 18 unique overgos would be expected to identify only about 113 total clafiesq.3).

Therefore, the 18 popular oligos described above netted about 22 times as many positive

60

clones as would unique oligos. Results with other sets of popular oligos not described in this
manuscript have given comparable results. Therefore, we conclude that the popular oligo
algorithm provides a substantial gain of efficiency in probing BAC genomics libraries for
gene-containing clones.

The number of positive BAC clones identified with various pools sizes of unique oligos
has consistently been in the range of 6 to 8 BACs per unique oligo. For example, pools of 192
unique oligos repeatedly provide about 1200 to 1600 positive BAC addresses. Furthermore,
checking the sequences of unique oligos with BLAST has consistently provided assurance

that our unique oligo algorithm indeed is as selective as it is intended to be.

61

Chapter 4

Minimum Common String Partition

In the previous two chapters, we presented approaches for finding repetitive patterns in bi-
ological sequences. In this chapter, we aim to infer evolutionary and functional relations
among the discovered repeats. In the wide range of problems in this domain, we address
the problem of genome rearrangement with multigene families, where duplicated genes are
treated as repetitive patterns. In particular, we address the minimum common string partition
problem MCSP), which has tight connection with the problem of sorting by reversals with
duplicates, a key problem in genome rearrangement. The restricted ver8it@SH where
each letter occurs at moktimes in each input string is denoted BAMCSP.

We show in Sectioh 4}2 thatMCSP (and therefordCSP) is NP-hard and, moreover,
even APX-hard. Sectign 4.3 presents a 1.5-approximation and a 1.1037-approximation for

2-MCSP. This chapter is mainly from [31,82], except that Secfion 4.3.1 is fforn [16].

62

4.1 Preliminaries

String comparison is a fundamental problem in computer science, with applications in areas
such as computational biology, text processing and compression. Typically, a set of string
operations is given (e.g., delete, insert and change a character, move a substring or reverse a
substring) and the task is to find the minimum number of operations needed to convert one
string to the other. Edit distance or permutation sorting by reversals are two well known
examples. In this chapter we address, motivated mainly by genome rearrangement applica-
tions, the minimum common string partition probleM@SP). ThoughMCSP takes a static
approach to string comparison, it has tight connection to the problem of sorting by reversals
with duplicates, a key problem in genome rearrangement.

A partition of a stringA is a sequenc® = (P, P, ..., P,,) of strings whose concatena-
tion is equal toA, that isP, P, . .. B,, = A. The stringsP; are called thdlocksof P. Given
a partition’? of a stringA and a partition@ of a string3, we say that the pair = (P, Q)
is acommon partitiorof A andB if Q is a permutation of?. Theminimum common string
partition problem is to find a common partition d@f, B with the minimum number of blocks.
The restricted version ?MCSP where each letter occurs at mégimes in each input string,
is denoted by:-MCSP. We denote bytblockgr) the number of blocks in a common parti-
tion 7. We say that two stringd and B arerelatedif every letter appears the same number
of times in A and B. Clearly, a necessary and sufficient condition for two strings to have a

common partition is that they are related.

63

The signedminimum common string partition problerBMCSP) is a variant otMCSP
in which each letter of the two input strings is givensg’“or “ —” sign (in genome rearrange-
ment problems, the letters represent different genes on a chromosome and the signs represent
orientation of the genes). For a strifwith signs, let— P denote the reverse éf, with each
sign flipped. A common partition of two signed stringsand B is the pairr = (P, Q) of
a partitionP = (Py, P, ..., P,,) of Aand a partition@ = (Q1,Qs, ..., Q,,) of B together

with a permutatiorr on [m] such that for eache [m/, eitherP; = Q,;), or P, = —Q, ;).

New results. In this paper, we show thatMCSP (and thereforéICSP) is NP-hard and,
moreover, even APX-hard. We also describé. B)37-approximation for2-MCSP and a
linear time4-approximation algorithm fo8B-MCSP. All of our results apply also to signed

MCSP. We are not aware of any better approximations.

4.1.1 Related work

The problem ofl-MCSP coincides with the breakpoint distance problem of two permuta-
tions [75] which is to count the number of ordered pairs of symbols that are adjacent in the
first string but not in the other; this problem is obviously solvable in polynomial time. Sim-
ilarly as the breakpoint distance problem does, most of the rearrangement literature works
with the assumption that a genome contains only one copy of each gene. Under this as-
sumption, a lot of attention was given to the problem of sorting by reverBaigersais an

operation that reverses a specified substring of a given string; in the case of signed strings,

64

it also flips the sign of each letter in the reversed substring. In the problesartihg by
reversals the task is to determine the minimum number of reversals that transform a given
string A into a given stringB. The problem is solvable in polynomial time for signed strings
containing only one copy of each symbiol [39] but is NP-hard for unsigned strings [15]. The
assumption about uniqueness of each gene is unwarranted for genomes with multi-gene fam-
ilies such as the human genomel![67]. Chen et al. [16] studied a generalization of the problem,
the problem otigned reversal distance with duplicat&RDD); according to themSRDD
is NP-hard even if there are at most two copies of each gene. They also introduced the signed
minimum common partition problem as a tool for dealing WtiRDD. Chen et al. observe
that for any two related signed stringsand B, the size of a minimum common partition
and the minimum number of reversal operations needed to transfaians, are within a
multiplicative factor2 of each other. (In the case of unsigned strings, no similar relation
holds: the reversal distance df= 1234 ...n andB = n...4321 is 1 while the size of min-
imum common partition i&» — 1.) They give al.5-approximation algorithm foe-MCSP
(see Subsectidn 4.3.1 for details), and use the algorithm to approx@R&®. Christie and
Irving [17] consider the problem of (unsigned) reversal distance with duplicR@B) and
prove that it is NP-hard even for strings over binary alphabet.

Chrobak et al.[[19] analyze a natural heuristic MCSP, the greedy algorithm: itera-
tively, at each step extract a longest common substring from the input strings. They show that
for 2-MCSP, the approximation ratio is exactB; for 4-MCSP the approximation ratio is

Q(logn); for the generaMCSP, the approximation ratio is betwe&l(n’43) andO(n°°7).

65

The same bounds apply f@MCSP. In [31] Kolman gives a linear time 4-approximation
algorithm for 3MCSP. In [47] Kolman describes a simple modification of the greedy algo-
rithm; the approximation ratio of the modificationd¥%?) for k.-MCSP and it runs in time
O(k - n). The same bounds hold also isSMCSP andk-SRDD. Recently,[[46] presents a
linear time©(k)-approximation algorithm fok-MCSP.

Closely related is the problem of edit distance with moves in which the allowed string op-
erations are the following: insert a character, delete a character, move a substring. Cormode
and Muthukrishnar [22] describe @&log n log™ n)-approximation algorithm for this prob-
lem. Shapira and Storer [69] observed that restriction to move-a-substring operations only
(instead of allowing all three operations listed above) does not affect the edit-distance of two
strings by more than a constant multiplicative factor. Since the size of a minimum common
partition of two strings and their distance with respect to move-a-substring operations differ
only by a constant multiplicative factor, the algorithm of Cormode and Muthukrishnan yields

anO(lognlog™ n)-approximation foMCSP.

4.1.2 Combinatorial properties of MCSP

Throughout the chapter, we assume that the two strihgs given as input tdaMCSP are

related. This is a necessary and sufficient condition for the existence of a common patrtition.
Given a stringA = a; ...a,, for the sake of simplicity we will use the symba] to

denote two different things. First, may denote the specific occurrence of the lettein

the stringA, namely the occurrence on positibnAlternatively,a; may denote just the letter

66

itself, without any relation to the string. Which alternative we mean will be clear from

context.

Common partitions as mappings. Given two stringsA = ay...a, andB = b;...b,
of lengthn, a common partitionr of A and B can be naturally interpreted as a bijective
mapping fromA to B (that is, if P, ..., P, is the partition ofA and (@, ..., Q,, is the
partition of B in 7, then for eacly € [m], the letters fromP; are mapped from left to right
to the corresponding;/), and this in turn as a permutation pr]. With this understanding
in mind, we say that a pair of consecutive positions+ 1 € [n] is abreakof = in A if
m(i+ 1) # 7(i) + 1. In other words, a break is a pair of letters that are consecutivietiat
are mapped by to letters that are not consecutive/ih The number of breaks in will be
denoted bytbreaksr).

Clearly, not every permutation dn| corresponds to a common partitionéfand B. We
say that a permutatiop on [n] preserves lettersf A and B, if a; = b, for all i € [n].
Then, every letter-preserving mappipgcan be interpreted as a common partitijgnand
#blockgp) = #breaksp) + 1. On the other hand, for a common partitien= (P, Q) in-
terpreted as a permutatio#blockgr) > #break$r) + 1 (the inequality is due to possible
unnecessary breaks ir). Thus, theMCSP problem is to find a permutation on [n| that
preserves letters of and B and has the minimum number of breaks. An alternative formula-
tion is that the goal is to find a letter-preserving permutation that maps the maximum number

of pairs of consecutive letters i to pairs of consecutive letters iB.

67

Common partitions and independent sets. Let X denote the set of all letters that occur in
A. A duois an ordered pair of lettersy € X2 that occur consecutively id or B (that is,
there exists ansuch thatt = a; andy = a;,1, orx = b; andy = b;,1). A specificduo is an
occurrence of a duo i or B. The difference is that a duo is just a pair of letters whereas a
specific duo is a pair of letters together with its positiormatchis a pair(a;a;1,b;b;11) of
specific duos, one from and the other one from®, such that; = b; anda;, = b;;1. Two
matchesa;a;t1,b;b;41) and(agart1, bibis1), ¢ < k, arein conflictif eitheri = k andyj # [,
ori+1l=*kandj+1#1[0,0ri+1<kand{j,j+1}n{l,l+ 1} # 0. Informally, two

matches are in conflict if they cannot be realized at the same time.

gc ab abic ab
[ab|abc ab |ab ¢
abc |ab
ab abc
abc @ abc ab
ab| abc ab ab b

Figure 4.1: Conflict graph faMICSP instanceA = abcab and B = ababc.

68

We construct aonflict graphG = (V, E) of A and B as follows. The set of nodds
consists of all matches of and B and the set of edgds consists of all pairs of matches that
are in conflict. Figurg 4]1 shows an example of a conflict graph. The number of vertiGes in

can be much higher than the length of the stridgand B (and is trivially bounded by:?).

Lemma4.1.1For A = ay...a, and B = b;...b,, let MIS(G) denote the size of the
maximum independent set of the conflict grapbf A and B andm denote the number of

blocks in a minimum common partition dfand B. Thenn — MIS(G) =m .

Proof. Given an optimal solution foMCSP, let S be the set of all matches that are used in
this solution. Clearlys is an independent set @ and|S| =n — 1 — (m — 1).

Conversely, given a maximum independent$ewe cut the stringd betweenu; anda; ,;
for every specific dua;a;,, that does not appear in any matchdnand similarly forB. In
this way,n — 1 — |S| duos are cut il and also inB, resulting inn — |S| blocks of A and
n — |S| blocks of B. Clearly, the blocks fron# can be matched with the blocks fraB and

thereforen < n —|S|. O

Maximum independent set is an NP-hard problem, yet, two approximation algorithms for

MCSP described in this paper make use of this reduction.

MCSP for multisets of strings. For the proofs in later sections we need a slight general-
ization of theMCSP. Instead of two stringsl, B, the input consists of two multiset$, B

of strings. Similarly as before, a partition of the multiset= { A4, ..., A;} is a sequence of

69

strings

Al,h e ,A17k17142’1, Ce 7A2’k2, Ce 7Al71, . 7Al7kl7

suchthatd; = A;; ..., Ay, fori € [l]. For two multisets of strings, the common partition,
the minimum common partition and the related-relation are defined similarly as for pairs of
strings.

Let A = {A,..., A} andB = {By,..., By} with h < [, be two related multisets of
strings, and let, 1, ..., 21, y;,_1 be2l — 2 different letters that do not appearihandB.

Considering two strings

A = AmiyiAsxoyeAs .z A,

B = Blyll’leygl’QBg e yh—lxh—lBhyhxh YTy, (41)

it is easy to see that an optimal solution for the classM@ISP instanceA, B yields an
optimal solution for the instancd, B of the multiset version, and vice versa. In particular, if
m' denotes the size of MICSP of the two multisets of stringgl and B, andm denotes the

size of aMCSP of the two stringsA and B defined as above, then

m=m'+2(1—-1). 4.2)

Thus, if one of the variants of the problems is NP-hard, so is the other.

70

4.2 Hardness of approximation

The main result of this section is the following theorem.
Theorem 4.2.12-MCSP and2-SMCSP are APX-hard problems.
We start by proving a weaker result.

Theorem 4.2.2 2-MCSP and2-SMCSP are NP-hard problems.

Proof. Since an instance &WICSP can be interpreted as an instanceSMCSP with all
signs positive, and since a solution ®MCSP with all signs positive can be interpreted as
a solution of the originaMCSP and vice versa, it is sufficient to prove the theorems for
MCSP only.

The proof is by reduction from the maximum independent set problem on cubic graphs
(3-MIS) [30Q]. Given a cubic grapl = (V, E') as an input for VIS, for each vertex € V'
we create a small instandg of 2-MCSP. Then we process the edgesobne after another,
and, for each edgéu,v) € FE, we locally modify the two small instancds, /,. The final
instance oR-MCSP, denoted by, is the union of all the small (modified) instandgs We
will show that a minimum common partition @f; yields easily a maximum independent set
inG.

The smallinstancé, = (X, Y,) foravertex: € V is defined as follows (cf. Figufe 4.2):

71

du au | bu cu | du| eu bu|eu| fu | gu fu | hu | ku au | bu hu

>

s ~

bu cu | du au | bu |eu du | eu| fu |hu fu | gu | lu hu | ku gu

Figure 4.2: An instancé, in the proof of NP-hardness @tMCSP. The lines represent all
matches, with the bold lines corresponding to the matches in the minimum common partition
Oy.

Xy = {du, ayby, cudyen, bueyfugu, fubuku, gulu, hu} 4.3)

Yu - {bua Cudua aubueua dueufuhw fugulua hukua gu}

where all the letters in the set,cy{a., b., . . ., [, } are distinct. It is easy to check thathas

a unigue minimum common partition, denoted®y, namely:

Ou = <(du7 aubua Cudua Cus bu; eufua Gu, fu; hukua guluy hu)

(bU7 C’u,diu aubu7 eu> du; eufu; hU7 fuy gulm hukua gu)>

We observe that foK¢ = (U, Xu andYe = U,y Yo, I = (Xg, Ye) is an instance

ueV
of 2-MCSP, and the superposition of &ll,’s is a minimum common partition af,. For the
sake of simplicity, we will sometimes abuse the notation by writiag= (. 1.

The main idea of the construction is to modify the instanggsuch that for every edge

(u,v) € E, a minimum common partition of; = |J, ., /. coincides with at most one of

72

the minimum common partitions df, andZ,,. This property will make it possible to obtain
a close correspondence between maximum independent sétamad minimum common
partitions of /;: if O, denotes a minimum common partition of (the modifiéd)and O,
denotes the common partition of (the modifidd)derived from a given minimum common
partition of I, thenU = {u € V | O), = O, } will be a maximum independent set@f To
avoid the need to use different indices, we lgéo denotd J, ., I, after any number of the
local modifications; it will always be clear from context to which one are we referring.

For description of the modifications, a few terms will be needed. The letjeaadc, in
X, are calledeft sockets of,, and the letterg,, and/, in X, areright sockets We observe
that all the four letters,,, c,, k., [, appears only once iXs (and once inYy). Given two
small instanced, and I, and a socket, of I, and a socket, of I,,, we say that the two
socketss,, ands, arecompatible if one of them is a left socket and the other one is a right
socket. Initially, all sockets arfeee

For technical reasons, we orient the edge§ @f such a way that each vertex has at most
two incoming edges and at most two outgoing edges. This can be done as follows: find a
maximal set (with respect to inclusion) of edge-disjoint cycle§jmand in each cycle, orient
the edges to form a directed cycle. The remaining edges form a forest. For each tree in the
forest, choose one of its nodes of degree one to be the root, and orient all edges in the tree
away from the root. This orientation will clearly satisfy the desired properties.

We are ready to describe the local modifications. Consider an(mTq;ae E and a free

right sockets, of I, and a free left socket, of 7,. Thatis,Rs, € X, ands,S € X,, for

73

some stringsk and.S. We modify the instanceg, = (X,,Y,) and/, = (X,,Y,) as follows

Xy — Xy U{Rs, S} —{Rsu}, Xy— X, U{su}—{s,5},
(4.4)

Y, <Y, Y, < Y, with s, renamed by,
(the symbolsJ and— denote multiset operations).

After this operation, we say that the right sockgtof 7, and the left socket, of I, are
used(not free). Note that iy, the letters, is renamed ta,. All other sockets of,, and all
other sockets of, that were free before the operation remain free. We also notd jlzatd
I, are no2-MCSP instances. However, for every letter, the number of its occurrences is the
same inX; and inYy, namely at most two. Thugy; is still a2-MCSP instance.

The complete reduction from a cubic gragh= (V, E') to a2-MCSP instance is done

by performing the local modifications (4.4) for all edgesin

Reduction of 3-MIS to 2-MCSP
1.Vu € V, definel, by the descriptio3),
—> - -
2.V(u,v) € E, find a free right socket, of I, and a free left socket, of /,,,
modify I, and/, by the descriptio 4),

3.setlg =, I

ueV “ur

Since the in-degree and the out-degree of every node is bounded by two, and since every
instancel,, has initially two right and two left sockets, there will always be the required free

sockets.

74

It remains to prove that a minimum common partition for the fihal(that is, when

modifications for all edges are done) can be used to find a maximum independen'set in

Lemma 4.2.1 Let G be a cubic graph oV vertices. Then, there exists an independenf set

of sizeh in GG if and only if there exists a common partition Qf of sizel2N — h.

Proof. Let G be the conflict graph of;; G has9N vertices. LetO!, = {(ducu, dycy),
(bulus buen), (fugu, fugu), (fuhu, fuha)}, thatis,O! is a set consisting of four out of the nine
possible matches in the small instanggin Figure[4.2, these four matches are represented
by the thin lines). The crucial observation is that_,, O, is an independent set of sizéV
in the conflict graptG.c.

Given an independent sebf GG, construct a common partition &f; as follows. Forn, €
I, use the five matches from,, and foru ¢ I, use the four matches fro¥,. The resulting
solution will usesh+4(N —h) matches which correspondst® — (5h+4(N—h)) = 5N —h
new breaks an@dN + 5N — h = 12N — h blocks.

Conversely, given a common partition &f of sizem, let I consist of all vertices such
that/, contributess matches (i.e.1 1 blocks) to the common partition. Theln> 12N — m,

and the proof is completed]

Since the reduction can clearly be done in polynomial time (even in linear), with respect

to |V| and|E|, the proof of NP-hardness @fMCSP is completed 0

Proof. (Theoren| 4.2]1) We use the same construction and only complement calculations

of the inapproximability ratio. Given a cubic graghon N vertices, letn’ denote the size

75

of a minimum common partition of the instanége = (X, Y;) and letm denote the size
of @ minimum common partition of the instan¢é, B), derived from the multiset instance
(X, Yo) by relation). We note that each &f; andY, consists of7/ NV strings. By
Lemma/4.2.L the size of a maximum independent sé&t iis 12N — m’ which equals to
26N — 2 — m by relation [4.2) and the above observation about siz& @fandY; thus,
an a-approximation algorithm foMCSP on the instancé A, B) can be used to derive an
independent set i&r of size at leask6 N — 2 — « - m.

Berman and Karpinski[10] proved that it is NP-hard to approxirBat@S within 135 —e,
for everye > 0. Thus, unless P=NP, for eveey> 0, the approximation ratiax of any
algorithm forMCSP must satisfy

26N —2—m _ 140
WN —2—a-m - 139 ¢

Solving fora yields, for every’ > 0,

LN -24139m 26N -2-m
o= 140m €= 140m <

Using the fact that a maximum independent set in any cubic grapt wertices has always
size at leastV/4, we havem < 26N — 2 — N/4 and we conclude that it is NP-hard to

approximateMCSP within 1 + ﬁ — ¢, foreverye > 0. O

76

Remark: To prove that onlySMCSP is APX-hard, it is possible to start with smaller

instanced,, and thus get the constant larger.

4.3 Algorithms

4.3.1 Simplel.5-approximation for 2-MCSP

We observed in Sectidn 4.1 thisICSP can be restated as finding a maximum independent
set in the conflict grapl which is the same as finding a minimum vertex cowd¥/C) for

G. Unfortunately, both these problems are NP-complete. Even worse, an approximation for
the vertex cover does not transfer in general to an approximatiod@8P (and there are

no good approximations faMIS). The problem is that there is no direct relation between the
number of vertices in th&®1VC and the number of breaks (or blocks)MCSP (while the

size ofMIS equals the number of unbroken duoMESP). There may be many vertices in
MVC of GG and still no breaks iMCSP. Fortunately, the situation is a bit easier PaMCSP.

In this and the following subsection we will assume that no duo appears at the same time
twice in A and twice inB. The point is that i2-MCSP, the minimum common partition
never has to break such a duo. Thus, if there exist$ @and B such a duo, it is possible to
replace it by a new letter, solve the modified instance and then replace the new letter back by
the original duo.

Given the assumption, we observe that the conflict g@ph (V) E), for any2-MCSP

instanceA, B on strings of lengtm, will have at mostn vertices. The reason is that if a

1

pair a;a; 1 from A matches with two pairs fron®, say withb;b; ., and withb;b, 4, that the
other occurrence of lettet; in A, say at position, is not followed by the other occurrence
of a;,1, and thus, the pait,a;; cannot be matched with anything froBx Therefore, on
average, every letter can appear in at most one match;/dras at most vertices.

Consider now amv-approximationC' for minimum vertex cover on the conflict graph
G = (V, E) and letC* denote a minimum vertex cover. Then, by Lenjma 4.1.1, a minimum
common partition has — |V| + |C*| blocks while a common partition corresponding to the
vertex covelC' hasn — |V| 4 |C| blocks. Exploiting the earlier observation that < n, we

get:

n—[Vi+|C] L4 lel=1er

< — 0 S«
n—|V]+|C| €|

Theorem 4.3.1 An a-approximation algorithm foMVC yields ana-approximation for the
2-MCSP.

Thus, a triviaR-approximation for minimum vertex cover can be turned 2esgproximation
for 2-MCSP. Observing further that, the conflict graphtilaw free, for2-MCSP, we can

usel.5-approximation algorithm for vertex cover by Hadidson[[35].

Corollary 4.3.2 There exists a polynomial5-approximation algorithm fo2-MCSP prob-

lem.

78

4.3.2 Reducing2-MCSP to MIN 2-SAT

In this section we will see how to so\&MCSP using algorithms foMIN 2-SAT. We start

by recalling the definition oMIN 2-SAT problem. InMIN 2-SAT we are given a boolean
formula in conjunctive normal form such that each clause consists of at most two literals, and
we seek seek an assignment of boolean values to the variables that minimizes the number of
satisfied clauses. Avidor and Zwickl [3] proved that unless P=NP, the problem cannot be
approximated withinl5/14 — ¢, for anye > 0, and they also gave B1037-approximation
algorithm which is the best approximation algorithm for the problem we are aware of. The

main result of this section is stated in the following theorem.

Theorem 4.3.3 An a-approximation algorithm foMIN 2-SAT yieldsa-approximations for

both2-MCSP and2-SMCSP.

Corollary 4.3.4 There exist polynomidl.1037-approximation algorithms fo2-MCSP and

2-SMCSP problems.

Proof. (Theorenj 4.3]3) There are only minor differences between the reductions for signed
and unsigned versions of the problem. We describe in detail the reductiorM@SP and
then briefly point out the differences f2rSMCSP.

Let A and B be two related strings. We start the proof with two assumptions that will

simplify the presentation:

(1) no duo appears at the same time twiceliand twice inB, and that

79

(2) every letter appears exactly twice in both strings.

Concerning the first assumption, the point is tha-mMCSP, the minimum common parti-
tion never has to break such a duo. Thus, if there existsamd B such a duo, it is possible
to replace it by a new letter, solve the modified instance and then replace the new letter back
by the original duo. Concerning the other, a letter that appears only once can be replaced by
two copies of itself. A minimum common partition never has to use a break between these
two copies, so they can be easily replaced back to a single letter, when the solution for the
modified instance is found.

The main idea of the reduction is to represent a common patrtiticharid B as a truth
assignment of a (properly chosen) set of binary variables. With eachdettér we associate
a binary variableX,. For each letter, € 3, there are exactly two ways to map the two
occurrences af in A onto the two occurrences ofin B: either the first. from A is mapped
on the firste in B and the second from A on the second in B, or the other way round.
In the first case, we say thatis mappedstraight and in the other case thatis mapped
across Given a common partitiom of A and B, if a lettera € ¥ is mapped straight we
setX, = 1, and ifa is mapped across we s&{, = 0. In this way, every common partition
can be turned into truth assignment of the variabigsa € 3, and vice versa. Thus, there
is one-to-one correspondence between truth-assignments for the vafabless 3, and
common partitions (viewed as mappings)AoandB.

With this correspondence between truth assignments and common partitions, our next
goal is to transform the two input stringsand B into a boolean formula such that

80

e ¢ is a conjunction of disjunctions (OR) and exclusive disjunctions (XOR),

e each clause contains at most two literals, and

e the minimum number of satisfied clausesgns equal to the number of breaks in a

minimum common partition ofA and B.

The formulay consists ofn — 1 clauses, with a claus@; for each specific due;a; 1,i €
[n —1]. Fori € [n — 1], lets;, = 1if a; is the first occurrence of the letterin A (that is,
the other copy of the same letter occurs on a position i), and lets; = 2 otherwise (that
is, If a; is the second occurrence of the lettgeiin A). Similarly, lett; = 1 if b; is the first
occurrence of the lettéx in B and lett; = 2 otherwise. We are ready to defipe There will
be three types of clauses¢n

If the duoa,a;,, does not appear ii at all, we define’; = 1. The meaning is that in
this casej, i + 1 is a break ind in any common partition off and B. We call such a position
aninherent breakLet b be the number of clauses of this type.

If the duoa,a;1 appears once i3, say asb;b;+1, letY = X, if s; # ¢;, and let

Y = -X,, otherwise; similarly, letZ = X, ., if s;11 # t;1; and letZ = =X, ,, otherwise.

i1 Qi+1

We defineC; = Y Vv Z. In this way, the claus€’; is satisfied if and only if, 7 + 1 is a break

in a common partition consistent with the truth assignment pfand X,

i+1"

Similarly, if the duoa;a;,, appears twice i3, we set”; = X,, ® X, if s; = 5,41, and

we setC; = -X,, ® X,,,, otherwise, where> denotes the exclusive disjunction. Again, the

141

clauseC; is satisfied if and only if,7 + 1 is a break in a common partition consistent with

81

the truth assignment of,, and X Let £ denote the number of these clauses.

iy
By the construction, a truth assignment that satisfies the minimum number of clauses in
o =Ci1A...\NC,_; corresponds to a minimum common partitionbéind B. In particular,
the number of satisfied clauses is equal to the number of breaks in the common partition
which is by one smaller than the number of blocks in the patrtition.
The formulap resembles an instance DISAT. However,2-SAT formulas do not allow
XOR clauses. One way to get around this is to replace every XOR clause by two OR clauses.
This increases the length of the formula which in turn increases the resulting approximation
ratio for2-MCSP. In the rest of the section, we describe how to avoid this drawback.
Consider a dua;a;,, in A for which C; is a XOR-clause. Then the duga;,,; appears
twice in B, and, by our assumption (1), the other occurrence of the letierA is followed
by a letter different fromu, . ; or the other occurrence of the letteris the last letter inA.
This implies thatc < b + 1.
Let ¢ be the boolean formula derived fromby omitting clauses of the first type, that
is, o = N\, Ci- Lety' be the formula that we get from by replacing each XOR clause
(XaY) by (XVY)A(XVY)and keeping all other clauses. Since for any values of boolean
variablesX andY, (X @Y)+1 = (X VY) + (X VY) (when using the boolean values
of the parentheses as integers), the minimum number of satisfied claysesaractly byk
smaller than the minimum number of satisfied clauses .in
Let s be the minimum number of satisfied clauses in the formul&hen,s + b + 1 is

the size of a minimum common partition dfand B and the minimum number of satisfied

82

clauses in the-SAT formulay’ is s + k. An a-approximation foiMIN 2-SAT instancey’
satisfies at most- (s+k) clauses and the same truth assignment satisfies atnestk) —k
clauses inp. Considering the additiondl breaks for clauses of the first type, this truth
assignment corresponds to a common partition with at mess + k) —k +b < o - (s +
b+ 1) — 1 breaks. Since the size of the minimum common partition-isb + 1, this is an
a-approximation. For unsignedCSP, the proof is completed.

For signedVICSP, we use the same correspondence between truth assignments and com-

mon partitions; the only difference is in definition of the clauSesO

83

Chapter 5

Conclusion

In this dissertation, we developed computational methods for the identification and analy-
sis of repetitive patterns in biological sequences. We gave a new definition of repeat that
considers both length and frequency; we designed efficient algorithms for finding unique
and popular oligos from large unigene databases; and we inferred the relation of multigene
families between two genomes by studying the minimum common string partMQ$P)
problem.

Although our contributions are somewhat diverse, we can delineate some common strate-

gies, which are detailed below.

Decompose long strings into short substrings. The rationale of this approach is that if

a long string is repetitive, then some of its substrings will be repetitive as well. Shorter
substrings serve the function of “signatures” for longer strings. The advantage of using
shorter strings is that they are easier to store and process. An example of using this strat-

84

egy is theg-gram filtration algorithm for approximate string matching (see é.d. [55, page
162]). The filtration strategy is based on the observation that if ength stringsA

and B match with at mostl mismatches, then they share gmer forgq = L#j, ie.
Afi...i+q—1] = Bli...i + ¢ — 1] for somel < i < [— ¢+ 1. This strategy has

been used in Chaptgef 2, where we define composite repeats as concatenations of elementary
repeats, and in Chaptef 3, where the algorithms for unique oligos and popular oligos use

seeds and cores to prune the search space.

Organize strings with graphs. In order to extract structures from strings, it is often fruitful

to organize them and their relationships using graphs (especially trees). The graph represen-
tation helps us isolate structures in the strings that otherwise will be difficult to detect. Graphs
can also be implemented in space-efficient data structures for processing of strings, as shown
in the various applications of suffix trees (see/[34]). For instance, in Ctjgpter 2 we use suffix
trees to find exact elementary repeats in linear time; in Chapter 3 we use UPGMA trees to
find the intersections of neighborhoods of candidate popular oligos; and in Chiapter 4, we use

conflict graphs to redud@lCSP problem to vertex cover problem.

Formulate combinatorial optimization problems. As it turns out, many problems in
computational biology can be formulated as combinatorial optimization problems (sée e.g. [33]
and references therein). This strategy is based on the assumption that nature often favors
parsimony models. For example, in Chapier 4 we look for an evolutionary scenario that min-

imizes the breakpoint distance between two genomes. Many of these problems are NP-hard

85

and one thus need to design approximation algorithms for them. However, we should use this
strategy carefully because its success depends on whether the specific parsimony assumption

is biologically realistic.

5.1 Future directions

In the problem of finding repeats in DNA sequences, the discovery of composite repeats
is only sketched. Also, several questions on finding elementary repeats are still open. For
example, it is not clear how to find consensus sequences of approximate repeats, how to rank
the repeats according to their statistical significance, or how to decide the minimum length
of nontrivial repeats, etc. We believe that the accuracy of determining elementary repeats is
crucial in the identification of composite repeats.

In the future, we plan to combine the identification of composite and elementary repeats
in a single process of dictionary and grammatical inference as follows. First, we will discover
elementary repeats using a stochastic dictionary model, which has already been successfully
applied to motif discovery (see e.@. [14]). Then, we will identify composite repeats using
stochastic grammars, which have been successful in predicting RNA secondary structures
(seel[23] and references therein). The rationale of this approach lies in the observations that
(i) motifs are one type of elementary repeats, and (ii) the structures in composite repeats,
such as LTRs (Long Terminal Repeats), inverted repeats, etc., are somewhat related to the

secondary structures of RNA.

86

A potential improvement for oligo design is to rank oligos according to their “usefulness”,
e.g. specificity for unique oligos and hybridization stability for popular oligos. A desirable
feature for Q1IGOSPAWN would consist of a ranking system that assigns a score to each
candidate oligo.

Our approximation algorithms described in Chapier 4 are for the variaMCSP that
upper-bound the sizes of gene families. It is still unknown whether there exists a constant ra-
tio bound for the generdICSP problem. For biological applications we need more flexible
variants ofMCSP. For example, if we use the more realistic modeling of genome rear-
rangement where two input genomes may contain different number of genes, then we should

introduce additional operations such as gene duplications, insertions and deletions.

87

Bibliography

[1] Mark D. Adams, Jenny M. Kelley, Jeannine D. Gocayne, Mark Dubnick, Mihael H.
Polymeropoulos, Hong Xiao, Carl R. Merril, Andrew Wu, Bjorn Olde, Ruben F.
Moreno, Anthony R. Kerlavage, W. Richard McCombie, and J. Craig Venter. Com-
plementary DNA sequencing: Expressed sequence tags and human genome project.
Science252(5013):1651-1656, 1991.

[2] A. Apostolico, M. E. Bock, and S. Lonardi. Monotony of surprise and large-scale
guest for unusual words (extended abstract). In G. Myers, S. Hannenhalli, S. Istralil,
P. Pevzner, and M. Waterman, editdPspc. of Research in Computational Molecular
Biology (RECOMB)pages 22-31, Washington, DC, April 2002.

[3] Adi Avidor and Uri Zwick. Approximating MIN.-SAT. In Proceedings of 13th Inter-
national Symposium on Algorithms and Computation (ISAX@ume 2518 of_ecture
Notes in Computer Sciengeages 465475, 2002.

[4] Timothy L. Bailey and Charles Elkan. Unsupervised learning of multiple motifs in
biopolymers using expectation maximizatidachine Learning21(1/2):51-80, 1995.

[5] P.Baldiand S. BrunakBioinformatics: The Machine Learning Approach. 2nd Etde
MIT Press, 2001.

[6] Zhirong Bao and Sean R. Eddy. Automated Novoidentification of repeat sequence
families in sequenced genomé&3senome Research?2(8):1269-1276, 2002.

[7] A Barakat, N Carels, and G Bernardi. The distribution of genes in the genomes of
Gramineae Proc. Natl. Acad. Sci. U.S.A94:6857-6861, 1997.

[8] G. Benson. An algorithm for finding tandem repeats of unspecified pattern size. In
S. Istrail, P. Pevzner, and M. Waterman, editétmceedings of the 2nd Annual Inter-
national Conference on Computational Molecular Biolpgyages 20-29, New York,

NY, 1998. ACM Press.

[9] G. Benson. Tandem repeats finder — a program to analyze dna sequénciesc Acids
Res, 27:573-580, 1999.

88

[10] Piotr Berman and Marek Karpinski. On some tighter inapproximability results. In
Proceedings of the of 26th International Colloquium on Automata, Languages and Pro-
gramming (ICALP) volume 1644 of_ecture Notes in Computer Sciengages 200—
209, 1999.

[11] M.S. Boguski, T.M. Lowe, and C.M. Tolstoshev. dbEST—database for “expressed se-
guence tags”’Nat. Genet.4(4):332-3, 1993.

[12] E. T. Bolton and B. J. McCarthy. A general method for the isolation of RNA comple-
mentary to DNA.Proc. Natl. Acad. Sci. U.S.A48(8):1390-1397, 1962.

[13] Jeremy Buhler and Martin Tompa. Finding motifs using random projectibi@omput.
Bio., 9(2):225-242, 2002.

[14] Harmen J. Bussemaker, Hao Li, and Eric D. Siggia. Building a dictionary for genomes:
Identification of presumptive regulatory sites by statistical analyBiec. Natl. Acad.
Sci. U.S.A.97:10096-10100, 2000.

[15] A. Caprara. Sorting by reversals is difficult. Fioceedings of the 1st Annual Interna-
tional Conference on Computational Molecular Biologyges 75-83, Santa Fe, NM,
1997. ACM Press.

[16] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Assignment
of orthologous genes via genome rearrangemitEE/ACM Trans. Comput. Biology
Bioinform, 2(4):302-315, 2005.

[17] David A. Christie and Robert W. Irving. Sorting strings by reversals and by transposi-
tions. SIAM Journal on Discrete Mathematick4(2):193—-206, 2001.

[18] M. Chrobak, D. Eppstein, G.F. Italiano, and M. Yung. Efficient sequential and parallel
algorithms for computing recovery points in trees and pathsA@M-SIAM Annual
Symposium on Discrete Algorithnmmages 158-167, 1991.

[19] Marek Chrobak, Petr Kolman, andiJbgall. The greedy algorithm for the minimum
common string partition problem. IRroceedings of the 7th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems (APPROX)
pages 84-95, 2004. To appear in ACM Transactions on Algorithms.

[20] Won-Hyong Chung, Sung-Keun Rhee, Xiu-Feng Wan, Jin-Woo Bae, Zhe-Xue Quan,
and Yong-Ha Park. Design of long oligonucleotide probes for functional gene detection
in a microbial communityBioinformatics 21(22):4092—-4100, 2005.

[21] T.J. Close, R. Wing, A. Kleinhofs, and R. Wise. Genetically and physically anchored
EST resources for barley genomi@&arley Genetics Newslette31:29-30, 2001.

[22] Graham Cormode and S. Muthukrishnan. The string edit distance matching problem
with moves. InProceedings of the 13th Annual ACM-SIAM Symposium On Discrete
Mathematics (SODApages 667-676, 2002.

89

[23] R. Durbin, S. Eddy, A. Krogh, and G. MitchisoBiological sequence analysis: prob-
abilistic models of proteins and nucleic acidSsambridge University Press, 1998.

[24] R. Edgar and E. Myers. Piler: identification and classification of genomic repeats. In
Proc. of the 13th International Conference on Intelligent Systems for Molecular Biology
(ISMB’05), page To appear, Detroit, Michigan, 2005. AAAI press, Menlo Park, CA.

[25] D. Eppstein. Personal communication, 2005. About the sparsest subsequence problem
for selecting top unique oligo from unigenes.

[26] Eleazar Eskin and Pavel A. Pevzner. Finding composite regulatory patterns in DNA se-
guences. IfProc. of the International Conference on Intelligent Systems for Molecular
Biology, pages Bioinformatics S181-S188. AAAI press, Menlo Park, CA, 2002.

[27] W. J. Ewens and G. R. Grarftatistical Methods in Bioinformatics. 2nd E8pringer-
Verlag, 2004.

[28] R. A. Fisher and F. Yates£xample 12, Statistical tablekondon, 1938.

[29] Esra Galun. Transposable elements: a guide to the perplexed and the novice with
appendices on RNAI, chromatin remodeling and gene tagdihgver academic, 2003.

[30] M. R. Garey and D. S. Johnso@omputers and intractability: a guide to the theory of
NP-completenes$-reeman, New York, NY, 1979.

[31] Avraham Goldstein, Petr Kolman, and Jie Zheng. Minimum Common String Parti-
tion Problem: Hardness and Approximations.Pioceedings of the 15th International
Symposium on Algorithms and Computation (ISAAGIume 3341 of_ecture Notes in
Computer Sciencgages 484—-495, 2004.

[32] Avraham Goldstein, Petr Kolman, and Jie Zheng. Minimum Common String Partition
Problem: Hardness and Approximatiori&ectronic Journal of Combinatoricd.2(1),
2005.

[33] H.J. Greenberg, W.E. Hart, and G. Lancia. Opportunities for combinatorial optimization
in computational biologyINFORMS J. Comput16(3):211-231, 2004.

[34] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational BiologyCambridge University Press, 1997.

[35] Magnus M. Halldbrsson. Approximating discrete collections via local improvements.
In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algoyithms
pages 160-169, San Francisco, California, 22—24 January 1995.

[36] C. S. Han, R. D. Sutherland, P. B. Jewett, M. L. Campbell, L. J. Meincke, J. G. Tesmer,
M. O. Mundt, J. J. Fawcett. U-J. Kim, L. L. Deaven, and N. A. Doggett. Construction
of a BAC contig map of chromosome 16q by two-dimensional overgo hybridization.
Genome researgii0:714-721, 2000.

90

[37] CS Han, RD Sutherland, PB Jewett, ML Campbell, LJ Meincke, JG Tesmer,
MO Mundt, JJ Fawcett, UJ Kim, LL Deaven, and NA Doggett. Construction of a BAC
contig map of chromosome 16q by two-dimensional overgo hybridizat@anome
Research104:714-721, 2000.

[38] J. M. Hancock and J. S. Armstrong. SIMPLE34: an improved and enhanced implemen-
tation for VAX and Sun computers of the SIMPLEX algorithm for analysis of clustered
repetitive motifs in nucleotide sequenc&omput. Appl. Bioscil0:67-70, 1994.

[39] Sridhar Hannenhalli and Pavel A. Pevzner. Transforming cabbage into turnip: Polyno-
mial algorithm for sorting signed permutations by reversalsAssoc. Comput. Mach.
46(1):1-27, January 1999.

[40] G. Z. Hertz and G. D. Stormo. Identifying DNA and protein patterns with statistically
sign ificant alignments of multiple sequenc8soinformatics 15:563-577, 1999.

[41] X. Huang and A. Madan. CAP3: A DNA sequence assembly progr@enome Re-
search 9:868-877, 1999.

[42] David S. Johnson. Approximation algorithms for combinatorial problem&omput.
Syst. Scj.9:256-278, 1974.

[43] 1. Jonassen. Efficient discovery of conserved patterns using a pattern @@apiput.
Appl. Biosci, 13:509-522, 1997.

[44] I. Jonassen, J. F. Collins, and D. G. Higgins. Finding flexible patterns in unaligned
protein sequence®rotein Science4:1587-1595, 1995.

[45] Keich and Pevzner. Finding motifs in the twilight zone.Annual International Con-
ference on Computational Molecular Biolggyages 195-204, Washington, DC, April
2002.

[46] P. Kolman and T. Walen. Reversal distance for strings with duplicates: Linear time
approximation using hitting set. Technical Report KAM-DIMATIA Series 776, Charles
University in Prague, 2006.

[47] Petr Kolman. Approximating reversal distance for strings with bounded number of du-
plicates. InProceedings of the 30th International Symposium on Mathematical Foun-
dations of Computer Science (MFC8plume 3618 ot.ecture Notes in Computer Sci-
ence pages 580-590, 2005.

[48] Stefan Kurtz, Jomuna V. Choudhuri, Enno Ohlebusch, Chris Schleiermacher, Jens
Stoye, and Robert Giegerich. REPuter: The manifold applications of repeat analysis
on a genomic scaléNucleic Acids Res29(22):4633—-4642, 2001.

[49] Stefan Kurtz and Chris Schleiermacher. REPuter: Fast computation of maximal repeats
in complete genome®ioinformatics 15(5):426-427, 1999.

91

[50] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C.
Wootton. Detecting subtle sequence signals: A Gibbs sampling strategy for multiple
alignment.Science262:208-214, October 1993.

[51] Benjamin Lewin, editorGenes VIII Oxford University Press, New York, NY, 2004.

[52] Fugen Li and Gary D. Stormo. Selection of optimal DNA oligos for gene expression
arrays.Bionformatics 17(11):1067-1076, 2001.

[53] Dave Matthews, Thomas Wicker, and Jorge Dubcovsky. TREP: the triticeae re-
peat sequence database. Availablehtip://wheat.pw.usda.gov/ITMI/
Repeats/

[54] W Michalek, W Weschke, KP Pleissner, and A Graner. Est analysis in barley defines a
unigene set comprising 4,000 gen&seor Appl Genetl04:97-103, 2002.

[55] G. Navarro and M. Raffinot.Flexible pattern matching in strings: practical on-line
search algorithms for texts and biological sequenc&sambridge University Press,
2002.

[56] A.F. Neuwald, J.S. Liu, and C.E. Lawrence. Gibbs motif sampling: Detecting bacterial
outer membrane protein repealotein Sciencg4:1618-1632, 1995.

[57] S. Ouyang and C.R. Buell. The TIGR plant repeat databases: a collective resource for
the identification of repetitive sequences in plantkucleic Acids Resear¢t32:360—
363, 2004.

[58] Pavel A. Pevzner and Sing-Hoi Sze. Combinatorial approaches to finding subtle signals
in DNA sequences. IRroc. of the International Conference on Intelligent Systems for
Molecular Biology pages 269-278. AAAI press, Menlo Park, CA, 2000.

[59] Pavel A. Pevzner, Haixu Tang, and Glenn Tedler.novorepeat classification and frag-
ment assembly. IRroc. of Research in Computational Molecular Biology (RECOMB)
pages 213-222, San Diego, Ca, April 2004.

[60] A. L. Price, N. C. Jones, and P. A. Pevzner. De novo identification of repeat families in
large genomes. IRroc. of the 13th International Conference on Intelligent Systems for
Molecular Biology (ISMB’05)page To appear, Detroit, Michigan, 2005. AAAI press,
Menlo Park, CA.

[61] Sven Rahmann. Rapid large-scale oligonucleotide selection for microarrayso-in
ceedings of the First IEEE Computer Society Bioinformatics Conference (C$SB’02)
pages 54-63. IEEE Press, 2002.

[62] Isidore Rigoutsos and Aris Floratos. Combinatorial pattern discovery in biological se-
quences: The EIRESIASalgorithm. Bioinformatics 14(1):55-67, 1998.

92

http://wheat.pw.usda.gov/ITMI/Repeats/
http://wheat.pw.usda.gov/ITMI/Repeats/

[63] M. T. Ross, S. LaBrie, J. McPherson, and V. P. Stanton. Screening large-insert libraries
by hybridization. In N.C. Dracopoli, J.L. Haines, B.R. Korf, D.T. Moir, C.C. Morton,
C.E. Seidman, J.G. Seidman, and D.R. Smith, editGtgyent protocols in Human
Geneticspages 5.6.1 — 5.6.52. John Wiley and Sons, New York, 1999.

[64] J.-M. Rouillard, C. J. Herbert, and M. Zuker. Oligoarray: Genome-scale oligonu-
cleotide design for microarray8ioinformatics 18(3):486—-487, 2002.

[65] Steve Rozen and Helen J. Skaletsky. Primer3 on the WWW for general users and for
biologist programmers. In S. Krawetz and S. Misener, edi®isinformatics Meth-
ods and Protocols: Methods in Molecular Biolggyages 365-386. Humana Press,
Totowa, NJ, 2000. Available dtttp://www-genome.wi.mit.edu/genome
software/other/primer3.html

[66] M. Sagot and E. W. Myers. Identifying satellites in nucleic acid sequences. In S. Is-
trail, P. Pevzner, and M. Waterman, editdPspceedings of the 2nd Annual Interna-
tional Conference on Computational Molecular Biologpages 234-242, New York,
NY, 1998. ACM Press.

[67] D. Sankoff and N. EI-Mabrouk. Genome rearrangement. In Tao Jiang, Ying Xu, and
Michael Q. Zhang, editor&urrent Topics in Computational Molecular Biologyages
135-155. The MIT Press, 2002.

[68] J. P. Schmidt. All highest scoring paths in weighted grid graphs and their application to
finding all approximate repeats in strings. Rroceedings of the 3rd Israel Symposium
on Theory of Computing and Systempages 67-77. IEEE Computer Society Press,
1995.

[69] Dana Shapira and James A. Storer. Edit distance with move operatioa8thlisym-
posium on Combinatorial Pattern Matching (CPMplume 2373 olecture Notes in
Computer Scienggages 85-98, 2002.

[70] A.F.A. Smit and P. Green. HEPEATMASKER. Available at http://www.
repeatmasker.org/

[71] D.L. Swofford. PAUP: Phylogenetic Analysis Using Parsimony version 4.0 beta 10
Sinauer Associates, Sunderland, Massachusetts, 2002.

[72] Martin Tompa and Jeremy Buhler. Finding motifs using random projectionsnihual
International Conference on Computational Molecular Biologgges 67—74, Mon-
treal, Canada, April 2001.

[73] P. E. Warburton, J. Giordano, F. Cheung, Y. Gelfand, and G. Benson. Inverted re-
peat structure of the human genome: the x-chromosome contains a preponderance of
large, highly homologoous inverted repeats that contain testes ga@esme Research
14:1861-1869, 2004.

93

http://www-genome.wi.mit.edu/genome_software/other/primer3.html
http://www-genome.wi.mit.edu/genome_software/other/primer3.html
http://www.repeatmasker.org/
http://www.repeatmasker.org/

[74] M. S. WatermanIntroduction to Computational BiologyChapman & Hall, 1995.

[75] G. A. Watterson, W. J. Ewens, T. E. Hall, and A. Morgan. The chromosome inversion
problem.Journal of Theoretical Biology99:1-7, 1982.

[76] Y. Yu, J. P. Tomkins, R. Waugh, D. A. Frisch, D. Kudrna, A. Kleinhofs, R. S. Bruegge-
man, G. J. Muehlbauer, R. P. Wise, and R. A. Wing. A bacterial artificial chromosome
library for barley Hordeum vulgare L).and the identification of clones containing pu-
tative resistance genegsheor Appl Genetl01(7):1093-1099, 2000.

[77] J. Zheng, T. Close, T. Jiang, and S. Lonardi. Efficient selection of unique and popular
oligos for large EST databases.Rroceedings of Symposium on Combinatorial Pattern
Matching (CPM’03) volume 2676 ofLNCS pages 273-283, Morelia, Mexico, June
2003. Springer.

[78] J. Zheng, T. Close, T. Jiang, and S. Lonardi. Efficient selection of unique and popular
oligos for large EST databasd3ioinformatics 20(13):2101-2112, 2004.

[79] J. Zheng and S. Lonardi. Discovery of repetitive patterns in dna with accurate bound-
aries. InProceedings of IEEE International Symposium on Biolnformatics and Bio-
Engineering (BIBE'05)pages 105-112, Minneapolis, Minnesota, October 2005.

[80] J.Zheng, J. T. Svensson, K. Madishetty, T. Close, T. Jiang, and S. Lonardi. Oligospawn:
a software tool for the design of overgo probes from large unigene dataBME
Bioinformatics 7(7), 2006.

94

	List of Tables
	List of Figures
	Introduction
	Challenges
	A summary of our contribution
	Targeted audience

	Repeat Finding
	Preliminaries
	Related work
	Our contribution

	Definition
	Algorithms for finding elementary repeats
	Exact repeats
	Approximate repeats

	Results
	Simulations
	Real biological repeats

	Oligo Design
	Preliminaries
	Our Contribution
	Notations

	Unique oligo
	Definition
	Algorithm
	Group-unique oligo

	Popular oligo
	Definition
	Algorithm

	Oligo filtration and selection
	Results
	Implementation
	Simulations
	Running on real data
	Overgo hybridization

	Minimum Common String Partition
	Preliminaries
	Related work
	Combinatorial properties of MCSP

	Hardness of approximation
	Algorithms
	Simple 1.5-approximation for 2-MCSP
	Reducing 2-MCSP to MIN 2-SAT

	Conclusion
	Future directions

	Bibliography

